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Disclaimers...

I No single-agent reinforcement learning (RL) nor Game Theory basics
(see wonderful tutorials yesterday!)

I No fancy videos/demos, nor “deep” neural nets/“Transformers”

I No (GitHub) codebases or Jupyter notebook, PyTorch, PettingZoo
(Terry et al., 2021), OpenSpiel (Lanctot et al., 2019), StarCraft
Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019), or Google
Football (Kurach et al., 2020)...

I May not be most comprehensive and up-to-date (but will try :))
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Reinforcement Learning

I Reinforcement learning (RL) has attracted increasing attention lately

I Goal: Autonomous agents make sequential decisions in unknown
dynamic environments
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Multi-agent Interactions are Prevalent in AI Systems

I In fact, many success stories of AI systems naturally involve multi-agent
interactions in a dynamic environment:

I Examples (left-to-right): Self-driving fleets (Shalev-Shwartz et al.,
2016), networked robotic arms (Levine et al., 2018), Amazon warehouse
robots (Amazon, 2023), DeepBlue (IBM, 1997), AlphaGo (Silver et al.,
2016), poker bots (Heinrich and Silver, 2016)
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Multi-agent Interactions are Prevalent in AI Systems

I And many more (you must have heard of)... Dota 5v5 (Berner et al.,
2019), Diplomacy games (FAIR, 2022), StarCraft games (Vinyals et al.,
2019), particle environments (Lowe et al., 2017)



Multi-agent Interactions are Prevalent in AI Systems

I And many more (you might have heard of)... telecommunications (Liu
and Zhao, 2010; Bubeck et al., 2020), finance/trading (Liu et al.,
2022c), power systems (Chen et al., 2022a)



Multi-agent Interactions are Prevalent in AI Systems
I And many more (you/I may not have thought of)... “field deployment”

of variable speed limit control at Nashville, Tennessee (Zhang et al.,
2024b); ChatBot and conversational agent (OpenAI, 2022)



Multi-agent Reinforcement Learning

I An old topic that got revitalized recently, probably all started from

I Received broad research interest from ML, Econ, Control, and Alg.
Game Theory (with an increasing number of workshops/programs at
Simons Institute, NeurIPS, ICML, ICLR, CDC ... over the years)
I What is really multi-agent RL (MARL)? In one figure:
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A Gentle Introduction to MARL: Outline

I Part I: Basics and Classical Results

I Part II: Modern Results

I Part III: Why Multi-agent RL?

I Concluding Remarks



Part I.A: Basics



A Basic Model: Stochastic/Markov Games (SGs/MGs)

I (Infinite-horizon) stochastic games (Shapley, 1953; Fink et al., 1964):
hS , {Ai}i2[n], {r is}s2S,i2[n], p, �, ⇢i

I n agents (called interchangeably as players)

I S is the set of states

I A
i is the set of actions that player i can take

I r
i
s (a

1, · · · , an) is reward of player i given joint action (a1, · · · , an) at s;
I If n = 2 and r

1
s (a

1, a2) + r
2
s (a

1, a2) = 0, it is two-player zero-sum;
competitive nature

I If r1 = r
2 = · · · = r

n, it is identical-interest or common-payo↵ or a
team problem; cooperative nature

I Player i takes actions ai 2 A
i at state s 2 S , and the state transitions to

s
0 according to s

0 ⇠ p(·|s, a1, · · · , an) 2 �(S)

I � 2 [0, 1) is the discount factor; ⇢ 2 �(S) is the initial state distribution

I As a fundamental framework for MARL ever since (Littman, 1994)
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A Basic Model: Stochastic/Markov Games

I Finite-horizon/Episodic variant (common in recent MARL theory):

hS , {Ai}i2[n], {r i,hs }s2S,i2[n],h2[H], {ph}h2[H],Hi
I S is the set of states

I A
i is the set of actions that player i can take

I r
i,h
s (a1, · · · , an) denotes the reward function of player i given action
profile (a1, · · · , an) at state s and step h;

I Player i takes actions aih 2 A
i at state sh 2 S and step h, and the state

transitions to sh+1 at h + 1 by sh+1 ⇠ p
h(·|sh, a1h, · · · , anh) 2 �(S)

I H is the episode length



Infinite-horizon SGs: Policies

I Mostly consider stationary Markov policies (as usual in single-agent RL)

I Let ⇡i := {⇡i (s)}s2S with ⇡i (s) (or ⇡i
s for short) in �(Ai ) denoting the

(mixed) strategy of player i at state s and ⇡ = (⇡1, · · · ,⇡n) denoting a
joint policy

I One can also define non-stationary Markov policies: ⇡i = (⇡i,1,⇡i,2, · · · )
with ⇡i,h(s) (or ⇡i,h

s ) in �(Ai ) at time step h

I Joint Markov policies:

I Stationary: ⇡ : S ! �(
Qn

i=1 Ai );
I Non-stationary: ⇡ = (⇡1,⇡2, · · · ) with ⇡h : S ! �(

Qn
i=1 Ai ) at

time step h

I Product policies: ⇡s = ⇡1
s ⇥ · · ·⇥ ⇡n

s , i.e., no correlation in action choice
among agents at each state s; otherwise they are correlated in general

I Marginalized policies of other agents �i : given ⇡ and agent i ,
⇡�i : S ! �(A�i ) outputs its marginal distribution at each state s

I Will focus on Markov policies throughout unless otherwise noted
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Infinite-horizon SGs: Value Functions and Best-responses
I Define the state-value function of player i as

V
i
⇡(s) := Eak⇠⇡sk

( 1X

k=0

�k
r
i
sk (ak)

���s0 = s

)
, 8s

where {sk}k�0 is a state process under joint policy ⇡

I Other (state-action-)value functions may be useful:

Q
i
⇡(s, a) := Eak⇠⇡sk

( 1X

k=0

�k
r
i
sk (ak)

���s0 = s, a0 = a

)
, 8s, a

q
i
⇡(s, a

i ) := Ea�i
k ⇠⇡�i

sk
[Q i

⇡(s, a
i , a�i )]

I Best-response policies: for a stationary policy ⇡�i : S ! �(A�i ), the
best-response policy of agent i is ⇡i

†(⇡
�i ) such that

V
i
†,⇡�i (s) := V

i
⇡i
†(⇡

�i )⇥⇡�i (s) = max
e⇡i :S!�(Ai )

V
i
e⇡i⇥⇡�i (s)

I Since ⇡�i is Markov, there exists a ⇡i
†(⇡

�i ) that best-responding at all s
(essentially an MDP from agent i ’s perspective)
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Infinite-horizon SGs: Solution Concepts

I Strategy modification: �i : S ⇥Ai ! Ai can modify the action of agent
i , after seeing the action recommended by ⇡; denote the modified joint
policy as (�i ⇧ ⇡i )� ⇡�i

I Di↵erent strategy modification classes exist, e.g., history-dependent

I Common solution concepts:

Definition ((Markov Perfect Stationary) Nash Equilibrium)

A joint product Markov stationary policy ⇡⇤ = (⇡1
⇤, · · · ,⇡n

⇤) is an ✏-(Markov
perfect stationary) Nash-equilibrium (NE) provided that

NE-Gap(⇡⇤) := max
i2[n],s2S

⇢
max

e⇡i :S!�(Ai )
V

i
e⇡i⇥⇡�i

⇤
(s)� V

i
⇡⇤(s)

�
 ✏,

with ✏ = 0 corresponding to the (Markov perfect stationary) NE.

I Always exists for finite-space SGs (Shapley, 1953; Fink et al., 1964)
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Infinite-horizon SGs: Solution Concepts
Definition ((Markov Perfect Stationary) Coarse Correlated Equilibrium)

A joint Markov stationary policy ⇡⇤ = (⇡1
⇤, · · · ,⇡n

⇤) is an ✏-(Markov perfect
stationary) coarse correlated equilibrium (CCE) provided that
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Definition ((Markov Perfect Stationary) Correlated Equilibrium)

A joint Markov stationary policy ⇡⇤ = (⇡1
⇤, · · · ,⇡n

⇤) is an ✏-(Markov perfect
stationary) correlated equilibrium (CE) provided that

CE-Gap(⇡⇤) := max
i2[n],s2S

⇢
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�i

V
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⇤
(s)� V

i
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 ✏,

with ✏ = 0 corresponding to the (Markov perfect stationary) CE.

I Also exist due to NE ✓ CE ✓ CCE

I Can define non-stationary versions of the equilibria correspondingly
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Finite-horizon SGs: Policies, Values, Solution Concepts
I Should consider non-stationary policies: for each agent i ,

⇡i = (⇡i,1, · · · ,⇡i,H) with ⇡i,h
s 2 �(Ai ) at step h

I State-value function (for step h 2 [H]):

V
i,h
⇡ (sh) := Eah0⇠⇡sh0

(
HX

h0=h

r
i,h0

sh0
(ah0)

���sh

)
,

I Best-responses, strategy modifications, and NE, CE, CCE are oftentimes
defined with respect to V

i,1
⇡ (s1) at time step 1, e.g., for ✏-NE

NE-Gap(⇡⇤) := max
i2[n]

n
V

i,1

†,⇡�i
⇤
(s1)� V

i,1
⇡⇤ (s1)

o
 ✏

I With H = O
⇣

log(1/✏)
1��

⌘
, the non-stationary solution concepts in both

cases become O(✏)-close

I Can use finite-horizon algorithms to find approximate
non-stationary solution for infinite-horizon settings

I Also works for approximating stationary solution in certain games
(come back later)
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Planning: Solution Computation with Model knowledge

I Recall the three approaches from single-agent MDPs/RL: value iteration
(VI), policy iteration (PI), and linear programming (LP)

I Value iteration: let V h
⇤ := (V 1,h

⇤ , · · · ,V n,h
⇤ ) and rh := (r 1,h, · · · , rn,h)

V h
⇤ = Bh(V h+1

⇤ ) := Equilibrium
h
rh + � · ph

h
V h+1

⇤

ii
, or

V
i,h
⇤ (sh) = r

i,h(sh,⇡
h
⇤) + � ·

X

sh+1

p
h(sh+1 | sh,⇡h

⇤)V
i,h+1
⇤ (sh+1)

where ⇡h
⇤ is the output from some matrix-game equilibrium computation

oracle Equilibrium, and Bh is the Bellman operator for SGs

I Finite-horizon: � = 1, V i,H+1
⇤ (s) = 0 for all i , s; stops in H-steps

I Infinite-horizon: � < 1, rh = r , ph = p, and thus Bh = B for all h
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Planning: Value Iteration
I Example: Two-player zero-sum SGs (Shapley, 1953)

I Minimax Theorem holds:

max
⇡1

min
⇡2

V
h
⇡1⇥⇡2 = min

⇡2
max
⇡1

V
h
⇡1⇥⇡2 ,

thus a unique NE value V
h
⇤ for each h

I CCE collapses to NE

I In this case, (minimax) VI proceeds as follows:
V

h
⇤ (s) max

µ2�(A1)
min

⌫2�(A2)
Ea1⇠µ,a2⇠⌫

| {z }
Equilibrium oracle

⇥
Q

h
⇤(s, a

1, a2)
⇤

where matrix Q
h
⇤(s, ·, ·)

Q
h
⇤(s, a

1, a2) := r
h(s, a1, a2) + � ·

X

s0

p
h(s 0 | s, a1, a2)V h+1

⇤ (s 0)

I Can also define VI for Q-function (will be used later)

Q
h
⇤(s, a

1, a2) r
h(s, a1, a2) + � ·

X

s0

p
h(s 0 | s, a1, a2)

· max
µ2�(A1)

min
⌫2�(A2)

Eea1⇠µ,ea2⇠⌫

h
Q

h+1
⇤ (s 0, ea1, ea2)

i
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Planning: Value Iteration
I Example: Two-player zero-sum SGs (Shapley, 1953)

I For infinite-horizon case, B is �-contracting:

kB(V )� B( eV )k1  � · kV � eV k1

I Key: non-expansiveness of maxmin operator. For all s 2 S
V (s)� eV (s)

=

���� max
µ2�(A1)

min
⌫2�(A2)

Ea1⇠µ,a2⇠⌫

h
Q(s, a1, a2)

i
� max

µ2�(A1)
min

⌫2�(A2)
Ea1⇠µ,a2⇠⌫

h
eQ(s, a1, a2)

i ����

 kQ(s, ·, ·)� eQ(s, ·, ·)k1 = � ·

����
X

s0

p(s 0 | s, ·, ·)
�
V (s 0)� eV (s 0)

�����
1

= � · kV � eV k1

I Thus, (minimax) value iteration (Shapley, 1953), V k+1  B(V k),
converges to (the unique NE) value V⇤ as k !1
I NE policy can then be extracted by solving for each s 2 S:

�
⇡1
⇤(s),⇡

2
⇤(s)

�
2 arg max

µ2�(A1)
min

⌫2�(A2)
[Q⇤(s, µ, ⌫)]
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Planning: Value Iteration
I Example: n-player general-sum SGs (Fink et al., 1964; Takahashi, 1964)

I Equilibria are not unique in general, even for matrix-game case

I Then, VI proceeds as follows:

V
i,h
⇤ (s) r

i,h(s,⇡h
⇤) + � ·

X

s0

p
h(s 0 | s,⇡h

⇤)V
i,h+1
⇤ (s 0)

where ⇡h
⇤ comes from Equilibrum 2 {NE, CE, CCE} oracle for

matrix games (NE is PPAD-hard to compute (Daskalakis et al.,
2009; Chen et al., 2009); CE, CCE are tractable by solving LPs)

⇡h
⇤ 2 Equilibrum

2

4
"
r
i,h(s, ·) + � ·

X

s0

p
h(s 0 | s, ·)V i,h+1

⇤ (s 0)

#

i2[n]

3

5

I Can also define VI for Q-function

Q
i,h
⇤ (s, a1, · · · , an) r

i,h(s, a1, · · · , an) + � ·

X

s0

p
h(s 0 | s, a1, · · · , an) · Q i,h+1

⇤ (s 0,⇡h+1
⇤ )

I Finite-horizon: stops in H steps; infinite-horizon: no �-contracting in
general!

I For infinite-horizon: non-stationary equilibrium is easy to compute;
stationary equilibrium may(?) be hard (come back later)



Planning: Value Iteration
I Example: n-player general-sum SGs (Fink et al., 1964; Takahashi, 1964)

I Equilibria are not unique in general, even for matrix-game case
I Then, VI proceeds as follows:

V
i,h
⇤ (s) r

i,h(s,⇡h
⇤) + � ·

X

s0

p
h(s 0 | s,⇡h

⇤)V
i,h+1
⇤ (s 0)

where ⇡h
⇤ comes from Equilibrum 2 {NE, CE, CCE} oracle for

matrix games (NE is PPAD-hard to compute (Daskalakis et al.,
2009; Chen et al., 2009); CE, CCE are tractable by solving LPs)

⇡h
⇤ 2 Equilibrum

2

4
"
r
i,h(s, ·) + � ·

X

s0

p
h(s 0 | s, ·)V i,h+1

⇤ (s 0)

#

i2[n]

3

5

I Can also define VI for Q-function

Q
i,h
⇤ (s, a1, · · · , an) r

i,h(s, a1, · · · , an) + � ·

X

s0

p
h(s 0 | s, a1, · · · , an) · Q i,h+1

⇤ (s 0,⇡h+1
⇤ )

I Finite-horizon: stops in H steps; infinite-horizon: no �-contracting in
general!

I For infinite-horizon: non-stationary equilibrium is easy to compute;
stationary equilibrium may(?) be hard (come back later)



Planning: Value Iteration
I Example: n-player general-sum SGs (Fink et al., 1964; Takahashi, 1964)

I Equilibria are not unique in general, even for matrix-game case
I Then, VI proceeds as follows:

V
i,h
⇤ (s) r

i,h(s,⇡h
⇤) + � ·

X

s0

p
h(s 0 | s,⇡h

⇤)V
i,h+1
⇤ (s 0)

where ⇡h
⇤ comes from Equilibrum 2 {NE, CE, CCE} oracle for

matrix games (NE is PPAD-hard to compute (Daskalakis et al.,
2009; Chen et al., 2009); CE, CCE are tractable by solving LPs)

⇡h
⇤ 2 Equilibrum

2

4
"
r
i,h(s, ·) + � ·

X

s0

p
h(s 0 | s, ·)V i,h+1

⇤ (s 0)

#

i2[n]

3

5

I Can also define VI for Q-function

Q
i,h
⇤ (s, a1, · · · , an) r

i,h(s, a1, · · · , an) + � ·

X

s0

p
h(s 0 | s, a1, · · · , an) · Q i,h+1

⇤ (s 0,⇡h+1
⇤ )

I Finite-horizon: stops in H steps; infinite-horizon: no �-contracting in
general!

I For infinite-horizon: non-stationary equilibrium is easy to compute;
stationary equilibrium may(?) be hard (come back later)



Planning: Value Iteration
I Example: n-player general-sum SGs (Fink et al., 1964; Takahashi, 1964)

I Equilibria are not unique in general, even for matrix-game case
I Then, VI proceeds as follows:

V
i,h
⇤ (s) r

i,h(s,⇡h
⇤) + � ·

X

s0

p
h(s 0 | s,⇡h

⇤)V
i,h+1
⇤ (s 0)

where ⇡h
⇤ comes from Equilibrum 2 {NE, CE, CCE} oracle for

matrix games (NE is PPAD-hard to compute (Daskalakis et al.,
2009; Chen et al., 2009); CE, CCE are tractable by solving LPs)

⇡h
⇤ 2 Equilibrum

2

4
"
r
i,h(s, ·) + � ·

X

s0

p
h(s 0 | s, ·)V i,h+1

⇤ (s 0)

#

i2[n]

3

5

I Can also define VI for Q-function

Q
i,h
⇤ (s, a1, · · · , an) r

i,h(s, a1, · · · , an) + � ·

X

s0

p
h(s 0 | s, a1, · · · , an) · Q i,h+1

⇤ (s 0,⇡h+1
⇤ )

I Finite-horizon: stops in H steps; infinite-horizon: no �-contracting in
general!

I For infinite-horizon: non-stationary equilibrium is easy to compute;
stationary equilibrium may(?) be hard (come back later)



Planning: Policy Iteration

I Finite-horizon: essentially the same as VI (exercise!)

I Infinite-horizon is more subtle, even for two-player zero-sum/minimax
case: naive PI (Pollatschek and Avi-Itzhak, 1969) as follows does not
converge in general (Van Der Wal, 1978; Condon, 1990)

Policy evaluation: V
k+1(s) = B1

⇡1,k ,⇡2,k (V k)(s)

where B⇡1,⇡2(V )(s) := r(s,⇡1(s),⇡2(s)) + � · p(· | s,⇡1(s),⇡2(s)) · V ,

Policy improvement (“Greedy” step):
�
⇡1,k+1(s),⇡2,k+1(s)

�
2 max

µ2�(A1)
min

⌫2�(A2)

⇥
r(s, µ, ⌫) + � · p(· | s, µ, ⌫) · V k+1

⇤
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converge in general (Van Der Wal, 1978; Condon, 1990)

Policy evaluation: V
k+1(s) = B1

⇡1,k ,⇡2,k (V k)(s)

where B⇡1,⇡2(V )(s) := r(s,⇡1(s),⇡2(s)) + � · p(· | s,⇡1(s),⇡2(s)) · V ,

Policy improvement (“Greedy” step):
�
⇡1,k+1(s),⇡2,k+1(s)

�
2 max

µ2�(A1)
min

⌫2�(A2)

⇥
r(s, µ, ⌫) + � · p(· | s, µ, ⌫) · V k+1

⇤



Planning: Policy Iteration

I Provable convergent variant (Ho↵man and Karp, 1966):

I Computation heavy: solve ⌦
⇣

1
1��

⌘
MDPs (Hansen et al., 2013)

Policy evaluation: V
k+1(s) = B1

⇡1,k (V k)(s)

where B⇡1(V )(s) := min
⌫2�(A2)

⇥
r(s,⇡1(s), ⌫) + � · p(· | s,⇡1(s), ⌫) · V

⇤
,

Policy improvement (“Greedy” step):
�
⇡1,k+1(s),⇡2,k+1(s)

�
2 max

µ2�(A1)
min

⌫2�(A2)

⇥
r(s, µ, ⌫) + � · p(· | s, µ, ⌫) · V k+1

⇤

I Other convergent variants with lighter computation (but maybe higher
space complexity) (Filar and Tolwinski, 1991; Bertsekas, 2021; Brahma
et al., 2022; Winnicki and Srikant, 2023)



Planning: Policy Iteration

I In general, policy-based algorithms can be hard to converge for games:
no value monotonicity (key to single-agent PI convergence) due to
agents’ conflict objectives

I Usually need some asymmetric update rules between agents, to
obtain monotonicity (Ho↵man and Karp, 1966; Condon, 1990;
Filar and Tolwinski, 1991; Patek, 1997; Bertsekas, 2021; Brahma
et al., 2022)

I Will see more later in learning settings!



Planning: (Nonlinear) Programming

I In contrast to single-agent MDP, there is no LP in general, but a
nonlinear program for characterizing NE:

min
⇡,{v i}i2[n]

X

i2[n]

⇢>
�
v
i � (I � �p(⇡))�1

r
i (⇡)

�
Nash gap

s.t. v
i (s) � r

i (s, ai ,⇡�i ) + �p(· | s, ai ,⇡�i ) · v i , 8 s, ai , i best-response

⇡i (s) 2 �(Ai ), 8 s, i simplex constraints

I Can be made as a LP for single-controller and other special SGs, and a
sequence of LPs for turn-based SGs (Filar and Vrieze, 2012)



Planning: (Nonlinear) Programming

I In contrast to single-agent MDP, there is no LP in general, but a
nonlinear program for characterizing NE:

min
⇡,{v i}i2[n]

X

i2[n]

⇢>
�
v
i � (I � �p(⇡))�1

r
i (⇡)

�
Nash gap

s.t. v
i (s) � r

i (s, ai ,⇡�i ) + �p(· | s, ai ,⇡�i ) · v i , 8 s, ai , i best-response

⇡i (s) 2 �(Ai ), 8 s, i simplex constraints

I Can be made as a LP for single-controller and other special SGs, and a
sequence of LPs for turn-based SGs (Filar and Vrieze, 2012)



Planning: (Nonlinear) Programming

I In contrast to single-agent MDP, there is no LP in general, but a
nonlinear program for characterizing NE:

min
⇡,{v i}i2[n]

X

i2[n]

⇢>
�
v
i � (I � �p(⇡))�1

r
i (⇡)

�
Nash gap

s.t. v
i (s) � r

i (s, ai ,⇡�i ) + �p(· | s, ai ,⇡�i ) · v i , 8 s, ai , i best-response

⇡i (s) 2 �(Ai ), 8 s, i simplex constraints

I Can be made as a LP for single-controller and other special SGs, and a
sequence of LPs for turn-based SGs (Filar and Vrieze, 2012)



Part I.B: Classical Results



Learning: Value-based Algorithms

I MARL: finding solutions with data and no (full) model knowledge

I Most earlier multi-agent RL algorithms are value-based

I Minimax Q-learning (Littman, 1994) for two-player zero-sum SGs:

I Require solving a minmax at each iteration, via e.g., LP

Q
k+1(sk , a

1
k , a

2
k) (1� ↵k) · Qk(sk , a

1
k , a

2
k)

+ ↵k ·

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1
k , a

2
k) + � · max

µ2�(A1)
min

⌫2�(A2)

⇥
Q

k(sk+1, µ, ⌫)
⇤�

I A Stochastic Approximation of the corresponding value iteration:

Q
h
⇤(s, a

1, a2) r(s, a1, a2) + � · p(· | s, a1, a2) · max
µ2�(A1)

min
⌫2�(A2)

⇥
Q

h+1
⇤ (·, µ, ⌫)

⇤
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Learning: Value-based Algorithms

I Convergence guarantee:

Theorem (Littman and Szepesvári (1996); Szepesvári and Littman (1999))

Suppose every state s is visited infinitely often during minimax-Q-learning,

and stepsizes
P1

k=1 ↵k =1 and
P1

k=1(↵k)2 <1, then Q
k
converges to the

NE Q-value Q⇤ = Q⇡⇤ as k !1.

I Key: �-contracting of B; similar to single-agent Q-learning (Watkins
and Dayan, 1992; Jaakkola et al., 1993; Tsitsiklis, 1994)

I In fact, (Szepesvári and Littman, 1999) provided a unified analysis
framework as long as the iterating (Bellman) operator is contracting
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Learning: Value-based Algorithms

I Extend to general-sum – Nash Q-learning (Hu and Wellman, 2003):

I Each agent need to maintain all agents’ Q-function estimates
I Require solving an NE for a general-sum game at each iteration

(computationally intractable)
I Only converge under very restricted assumptions (Bowling, 2000);

again, to ensure the contracting property of NE

Q
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I Friend-or-Foe Q-learning (Littman, 2001): replace NE
h�

Q
i,k
 
i2[n]

i
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µ2�(

Q
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·, µ, (a`)`2Foes

�

I Always converge; to NE if it is either adversarial or coordination
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Learning: Value-based Algorithms
I Other variants: correlated Q-learning (Greenwald et al., 2003) for

general-sum SGs; Q-learning (Arslan and Yüksel, 2017) for Teams and
weakly-acyclic SGs...

I Are value-based algorithms at odds with (inf-horizon) general-sum SGs?

I (Zinkevich et al., 2006) showed that value iteration (on Q) cannot
find stationary equilibrium in arbitrary general-sum SGs

I Constructed “NoSDE (Nasty) games”

Theorem (Zinkevich et al. (2006))

Every NoSDE game has a unique stationary equilibrium policy. For any NoSDE

game � with equilibrium policy ⇡, 9 another NoSDE game �0
with equilibrium

policy ⇡0
, s.t. Q

�
⇡ = Q

�0
⇡0 , but ⇡ 6= ⇡0

and V
�
⇡ 6= V

�0
⇡0 .

I Advocated a non-stationary equilibrium concept: cyclic equilibria
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weakly-acyclic SGs...

I Are value-based algorithms at odds with (inf-horizon) general-sum SGs?

I (Zinkevich et al., 2006) showed that value iteration (on Q) cannot
find stationary equilibrium in arbitrary general-sum SGs

I Constructed “NoSDE (Nasty) games”

Theorem (Zinkevich et al. (2006))

Every NoSDE game has a unique stationary equilibrium policy. For any NoSDE

game � with equilibrium policy ⇡, 9 another NoSDE game �0
with equilibrium

policy ⇡0
, s.t. Q

�
⇡ = Q

�0
⇡0 , but ⇡ 6= ⇡0

and V
�
⇡ 6= V

�0
⇡0 .

I Advocated a non-stationary equilibrium concept: cyclic equilibria



Learning: Value-based Algorithms
I Other variants: correlated Q-learning (Greenwald et al., 2003) for

general-sum SGs; Q-learning (Arslan and Yüksel, 2017) for Teams and
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Learning: Model-based Algorithms

I Model-based: learn models explicitly, and plan in the learned model

I E3 for single-controller SGs (Brafman and Tennenholtz, 2000) and
R-Max (Brafman and Tennenholtz, 2002) for general zero-sum SGs

I R-Max balances exploration-exploitation via optimism in face of

uncertainty (Lattimore and Szepesvári, 2020; Szepesvári, 2022)
I Key idea: initialize a model with maximal possible reward Rmax to

encourage exploration, and update during learning
I Results: convergence with poly sample and computation

complexities (can be high)
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Learning: Rationality and Convergence

I We have mostly discussed convergence

I (Bowling and Veloso, 2001) argued that a desirable multi-agent learning
algorithm should be both convergent and rational:

I Rationality: the algorithm converges to its opponent’s best
response if the opponent converges to a stationary policy

I I.e., the algorithm can exploit weak opponents

I Minimax (and Nash, Friend-or-Foe) Q-learning are not rational: they
converge to equilibrium regardless of what the opponents play
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Learning: Rationality and Convergence

I (Bowling and Veloso, 2001) proposed the WoLF (Win-or-Learn-Fast)
principle, provably rational and empirically convergent:

Q
i (s, ai ) (1� ↵)Q i (s, ai ) + ↵

✓
r
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eai
Q(s 0, eai )

◆
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⇣
⇡i (s)� ⇡̄i (s)

⌘
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(
� if a

i
2 argmax Q
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��

|Ai |�1
otherwise

sampling policy

with projection of ⇡i (s) on �(Ai ) and � satisfying WoLF with �w < �l

� =

(
�w if

P
ai ⇡

i (s, ai )Q i (s, ai ) >
P

ai ⇡̄
i (s, ai )Q i (s, ai ) win

�l otherwise learn fast

I In general, decentralized/independent algorithms (as if a single-agent
RL algorithm) are more likely to be rational (come back later)



Part II: Modern Results



Modern MARL Theory

I We may call out AlphaGo (Silver et al., 2016) again, as the watershed

I What’s changed?

I Non-asymptotic guarantees: regret guarantees, sample complexity,
computational complexity

I Function approximation: inspired by the empirical successes of
“deep” (MA)RL

I New models/settings: beyond canonical stochastic games, with
engineering applications



Modern MARL Theory

I We may call out AlphaGo (Silver et al., 2016) again, as the watershed

I What’s changed?

I Non-asymptotic guarantees: regret guarantees, sample complexity,
computational complexity

I Function approximation: inspired by the empirical successes of
“deep” (MA)RL

I New models/settings: beyond canonical stochastic games, with
engineering applications



Modern MARL Theory

I We may call out AlphaGo (Silver et al., 2016) again, as the watershed

I What’s changed?

I Non-asymptotic guarantees: regret guarantees, sample complexity,
computational complexity

I Function approximation: inspired by the empirical successes of
“deep” (MA)RL

I New models/settings: beyond canonical stochastic games, with
engineering applications



Part II.A: New Guarantees



Non-asymptotic Analyses: Sampling Protocols

I Simulator setting: good data coverage:
I Generative model setting (Kearns and Singh, 1999; Kakade, 2003):

can sample from any state-action pairs (s, a), e.g., from simulators
I Trajectory/Markovian sampling with explorative state initialization

and/or behavior policies that ensure “all states are visited”
(Even-Dar et al., 2003; Beck and Srikant, 2012)

I Online (exploration) setting: no simulator, needs to tradeo↵ exploration
and exploitation through interactions with the environment

I O✏ine setting: no interactions allowed, learn from fixed datasets that
may not have full/good coverage
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Non-asymptotic Analyses: Metrics
I Simulator and o✏ine settings: sample complexity to achieve

Equilibrium-Gap(⇡out)  ✏

that scales as poly
�
|S|, |A|, 1

✏ ,H, log
�
1
�
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, with H ⇠ 1
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I Online setting: regret

single-agent: Regret(K) :=
KX
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depending on ⇡k is product or correlated; and RegretCE is defined w.r.t.
max�i V

i,1
(�i⇧⇡i,k )�⇡�i,k (s1,k)

I Goal: achieve Regret(K ) ⇠ o(K ) and poly(|S|, |A|,H, log(1/�))

I If |A| =
Q

i2[n] |Ai | is replaced by maxi2[n] |Ai |, it is even polynomial in
n, and thus “breaks the curse of multi-agents” (Jin et al., 2023a)
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max�i V

i,1
(�i⇧⇡i,k )�⇡�i,k (s1,k)

I Goal: achieve Regret(K ) ⇠ o(K ) and poly(|S|, |A|,H, log(1/�))

I If |A| =
Q

i2[n] |Ai | is replaced by maxi2[n] |Ai |, it is even polynomial in
n, and thus “breaks the curse of multi-agents” (Jin et al., 2023a)



Simulator Setting: Model-based Algorithms
I For any (s, a1, · · · , an), one can sample s

0 ⇠ p(· | s, a1, · · · , an)
I Can “plug-in” any black-box planning oracles, e.g., VI, PI, etc.

I Mitigate non-stationarity issue due to all agents’ adapting

p̂(· | s, a1, a2) = N(s,a1,a2,s0)
N(s,a1,a2)

Theorem (ZKBY, ’20,’23)
This model-based MARL algorithm is near minimax optimal in the generative model

setting, with sample complexity eO(|S ||A1
||A

2
|(1� �)�3✏�2), and lower bound

eO(|S |(|A1
|+ |A

2
|)(1� �)�3✏�2). Moreover, when reward is given after estimating

p̂, both upper and lower bounds are eO(|S ||A1
||A

2
|(1� �)�3✏�2) and model-based

MARL is thus minimax optimal in this case.

I Shows the unique separation of model-based approach in MARL

I Power: generalize to multiple rewards/tasks (after p̂ estimated)
I Limitation: less adaptive and thus suboptimal in |A1|, |A2|

I (Subramanian et al., 2023): general-sum eO(|S |
Q

i2[n] |A
i
|(1� �)�3✏�2)

I Q: minimax optimality + break curse of multi-agents simultaneously?



Simulator Setting: Model-based Algorithms
I For any (s, a1, · · · , an), one can sample s

0 ⇠ p(· | s, a1, · · · , an)
I Can “plug-in” any black-box planning oracles, e.g., VI, PI, etc.

I Mitigate non-stationarity issue due to all agents’ adapting

p̂(· | s, a1, a2) = N(s,a1,a2,s0)
N(s,a1,a2)

Theorem (ZKBY, ’20,’23)
This model-based MARL algorithm is near minimax optimal in the generative model

setting, with sample complexity eO(|S ||A1
||A

2
|(1� �)�3✏�2), and lower bound

eO(|S |(|A1
|+ |A

2
|)(1� �)�3✏�2). Moreover, when reward is given after estimating

p̂, both upper and lower bounds are eO(|S ||A1
||A

2
|(1� �)�3✏�2) and model-based

MARL is thus minimax optimal in this case.

I Shows the unique separation of model-based approach in MARL

I Power: generalize to multiple rewards/tasks (after p̂ estimated)
I Limitation: less adaptive and thus suboptimal in |A1|, |A2|

I (Subramanian et al., 2023): general-sum eO(|S |
Q

i2[n] |A
i
|(1� �)�3✏�2)

I Q: minimax optimality + break curse of multi-agents simultaneously?



Simulator Setting: Model-based Algorithms
I For any (s, a1, · · · , an), one can sample s

0 ⇠ p(· | s, a1, · · · , an)
I Can “plug-in” any black-box planning oracles, e.g., VI, PI, etc.

I Mitigate non-stationarity issue due to all agents’ adapting

p̂(· | s, a1, a2) = N(s,a1,a2,s0)
N(s,a1,a2)

Theorem (ZKBY, ’20,’23)
This model-based MARL algorithm is near minimax optimal in the generative model

setting, with sample complexity eO(|S ||A1
||A

2
|(1� �)�3✏�2), and lower bound

eO(|S |(|A1
|+ |A

2
|)(1� �)�3✏�2). Moreover, when reward is given after estimating

p̂, both upper and lower bounds are eO(|S ||A1
||A

2
|(1� �)�3✏�2) and model-based

MARL is thus minimax optimal in this case.

I Shows the unique separation of model-based approach in MARL

I Power: generalize to multiple rewards/tasks (after p̂ estimated)
I Limitation: less adaptive and thus suboptimal in |A1|, |A2|

I (Subramanian et al., 2023): general-sum eO(|S |
Q

i2[n] |A
i
|(1� �)�3✏�2)

I Q: minimax optimality + break curse of multi-agents simultaneously?



Simulator Setting: Model-based Algorithms
I For any (s, a1, · · · , an), one can sample s

0 ⇠ p(· | s, a1, · · · , an)
I Can “plug-in” any black-box planning oracles, e.g., VI, PI, etc.

I Mitigate non-stationarity issue due to all agents’ adapting

p̂(· | s, a1, a2) = N(s,a1,a2,s0)
N(s,a1,a2)

Theorem (ZKBY, ’20,’23)
This model-based MARL algorithm is near minimax optimal in the generative model

setting, with sample complexity eO(|S ||A1
||A

2
|(1� �)�3✏�2), and lower bound

eO(|S |(|A1
|+ |A

2
|)(1� �)�3✏�2). Moreover, when reward is given after estimating

p̂, both upper and lower bounds are eO(|S ||A1
||A

2
|(1� �)�3✏�2) and model-based

MARL is thus minimax optimal in this case.

I Shows the unique separation of model-based approach in MARL

I Power: generalize to multiple rewards/tasks (after p̂ estimated)
I Limitation: less adaptive and thus suboptimal in |A1|, |A2|

I (Subramanian et al., 2023): general-sum eO(|S |
Q

i2[n] |A
i
|(1� �)�3✏�2)

I Q: minimax optimality + break curse of multi-agents simultaneously?



Simulator Setting: Model-based Algorithms
I For any (s, a1, · · · , an), one can sample s

0 ⇠ p(· | s, a1, · · · , an)
I Can “plug-in” any black-box planning oracles, e.g., VI, PI, etc.

I Mitigate non-stationarity issue due to all agents’ adapting

p̂(· | s, a1, a2) = N(s,a1,a2,s0)
N(s,a1,a2)

Theorem (ZKBY, ’20,’23)
This model-based MARL algorithm is near minimax optimal in the generative model

setting, with sample complexity eO(|S ||A1
||A

2
|(1� �)�3✏�2), and lower bound

eO(|S |(|A1
|+ |A

2
|)(1� �)�3✏�2). Moreover, when reward is given after estimating

p̂, both upper and lower bounds are eO(|S ||A1
||A

2
|(1� �)�3✏�2) and model-based

MARL is thus minimax optimal in this case.

I Shows the unique separation of model-based approach in MARL

I Power: generalize to multiple rewards/tasks (after p̂ estimated)
I Limitation: less adaptive and thus suboptimal in |A1|, |A2|

I (Subramanian et al., 2023): general-sum eO(|S |
Q

i2[n] |A
i
|(1� �)�3✏�2)

I Q: minimax optimality + break curse of multi-agents simultaneously?



Simulator Setting: Value-based Algorithms

I (Sidford et al., 2020): generalize variance-reduced Q-learning to
attained minimax-optimal for two-player zero-sum turn-based SGs

eO
✓
|S |·maxi=1,2{|Ai |}

(1� �)3✏2

◆

I (Gao et al., 2021): Q-learning of (Arslan and Yüksel, 2017) for
weakly-acyclic general-sum SGs

I (Lee, 2023): minimax Q-learning under explorative behavior
policies/reachability assumption

I (Li et al., 2022) addressed our open question in previous slide:
Q-learning with Follow-the-Regularized-Leader (FTRL) +
variance-aware bonus

O
 
H

4|S|
P

i2[n] |Ai |
✏2

!

for NE/CCE in non-stationary finite SGs
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Simulator Setting: Policy-based Algorithms

I (Li et al., 2022)’s FTRL part is kind-of policy-based (inherent
connection to natural policy gradient (Agarwal et al., 2021))

I (Winnicki and Srikant, 2023): lookahead policy iteration (to fix naive
PI) + [ZKBY, ’20, ’23] for two-player zero-sum SGs



Online Setting: Model-based Algorithms

I One key idea to tradeo↵ exploration-exploitation: optimism in face of
uncertainty (OFU) principle (Szepesvári, 2022)

I Maintain optimistic estimates of values/models to encourage exploration

I Model-based algorithms:

I Optimistic value iteration (Bai and Jin, 2020; Liu et al., 2021):

Q̄
i,h(s, a1, · · · , an) min

�
(r i,h + p̂

h
V̄

i,h+1)(s, a1, · · · , an)+�t ,H
 

Q
i,h(s, a1, · · · , an) min

n
(r i,h + p̂

h
V

i,h+1)(s, a1, · · · , an)��t , 0
o

⇡h(s) Equilibrium
�
Q̄

1,h(s, ·), · · · , Q̄n,h(s, ·)
�

with V̄
i,h(s) = Q̄

i,h(s,⇡h(s)), V i,h(s) = Q
i,h(s,⇡h(s)), and

p̂
h(· | sh, ah) = Nh(sh, ah, ·)/Nh(sh, ah)

I Think of zero-sum case — OFU for both min and max players
I Small di↵erences in bonus-term choices and Equilibrium oracle

for the zero-sum case: (Bai and Jin, 2020) used NE and (Liu
et al., 2021) used CCE (see also (Xie et al., 2020))
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Online Setting: Model-based Algorithms

I Guarantee of optimistic VI:

Theorem (Liu et al. (2021))

This optimistic VI algorithm achieves

Regret{NE,CE,CCE}(K) ⇠ eO

0

@
s

H4|S|2
Y

i2[n]

|Ai |K

1

A ,

and outputs a Markov policy ⇡out
that is an ✏-{NE,CE,CCE}, i.e.,

{NE,CE,CCE}-Gap(⇡out)  ✏

in eO
✓

H4|S|2
Q

i2[n] |A
i |

✏2

◆
episodes.

I Better bound of eO
⇣

H3|S||A1||A2|
✏2

⌘
for two-player zero-sum case with

di↵erent bonus terms (Liu et al., 2021)

I Lower bound ⌦
⇣

H3|S|maxi=1,2 |Ai |
✏2

⌘
; similar gap as in generative model

I Can “the curse of multi-agents” also be broken in online setting?
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Online Setting: Value-based Algorithms
I Optimistic Nash V -learning (Bai et al., 2020; Jin et al., 2023a):

V̄
h(sh) (1� ↵t)V̄

h(sh) + ↵t

�
r
h + V

h+1(sh+1)+�t

�

⇡h(sh) Adv-Bandit

✓
ah,

H � r
h � V

h+1(sh+1)

H

◆

with V
h(sh) min{H + 1� h, V̄ h(sh)} and Adv-Bandit an adversarial

bandit algorithm, e.g., EXP3 (Lattimore and Szepesvári, 2020)

I First proposed in (Bai et al., 2020) for zero-sum SGs, then generalized
to general-sum SGs as “V -learning” (Jin et al., 2023a); see also (Song
et al., 2022; Mao and Başar, 2022)

Theorem (Jin et al. (2023a))

V-learning can output a non-Markov policy ⇡out
that is an ✏-NE/CCE in

eO
✓

H5|S|maxi2[n] |A
i |

✏2

◆
episodes. A monotonic variant can output a Markov policy

that is an ✏-NE for two-player zero-sum SGs with the same sample complexity.

I Replacing Adv-Bandit oracle by a no-swap-regret one can address CE

I V-learning breaks “the curse” in finite-horizon online setting
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Online Setting

I Other notable results:

I (Wang et al., 2023) and [CZD, ’23]: break “the curse” with
independent linear function approximation

I (Wei et al., 2017): a model-based one for average-reward SGs,
based on UCRL2 (Jaksch et al., 2010)

I (Xie et al., 2020; Chen et al., 2022c): linear function
approximation for the game model

I (Jin et al., 2022; Huang et al., 2022; Xiong et al., 2022; Foster
et al., 2023a; Liu et al., 2024): general function approximation



O✏ine Setting

I Dataset: D :=
n
(s(`)h , a(`)h , rh,(`), s(`)h+1)

o

`2[N],h2[H]
⇠ dµ

I When o✏ine data has full coverage, batch RL on the dataset works (pay
distribution shift coe�cient) (Munos and Szepesvári, 2008; Chen and
Jiang, 2019)

I Interesting regime: partial data coverage

I What is the minimal the o✏ine data distribution dµ should cover?

I For single-agent RL, single optimal policy ⇡⇤ coverage su�ces (Jin
et al., 2021; Rashidinejad et al., 2021; Xie et al., 2021b; Zhan
et al., 2022), [OPZZ, ’22]

max
s,a

d
⇡⇤
⇢ (s, a)

dµ(s, a)
 C <1
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O✏ine Setting

I For multi-agent RL, Nash equilibrium coverage is not enough; unilateral
coverage is required (Cui and Du, 2022b)

4 max
s,a

d
⇡1
⇤,⇡

2
⇤

⇢ (s, a)

dµ(s, a)
 C , 8 max

(
max
s,a,⇡2

d
⇡1
⇤,⇡

2

⇢ (s, a)

dµ(s, a)
, max
s,a,⇡1

d
⇡1,⇡2

⇤
⇢ (s, a)

dµ(s, a)

)
 C

I Under unilateral coverage, pessimistic Nash value iteration is e�cient
(Cui and Du, 2022b,a); see also (Zhong et al., 2022)
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Part II.B: New Models



Beyond Canonical SGs: Multi-player Zero-sum SGs
I For matrix games: computationally, for NE, general-sum is hard

(Daskalakis et al., 2009; Chen et al., 2009); two-player zero-sum is easy

I Is there a class of games in between that is also easy (in some sense)?

I Multi-player zero-sum games:
I Naively, 3-player zero-sum is hard (with a dummy player)
I With a polymatrix payo↵ structure (Cai et al., 2016) (below for

agent i and some graph G := ([n], E)), it enjoys equilibrium
collapse: CCE=NE

r
i (a) =

X

j :(i,j)2E

r
i,j(ai , aj)

I What about stochastic games?

I One can define this polymatrix structure for each auxiliary game’s payo↵
induced by any value vector V [P⇤Z⇤O, ’23]:

Q
i
V (s, a) := r

i (s, a) + �
X

s0

p(s 0 | s, a)V (s 0) =
X

j :(i,j)2E

Q
i,j
V (ai , aj)

I It covers polymatrix reward + single-controller/turn-based/additive
structures (Flesch et al., 2007)
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I Multi-player zero-sum games:
I Naively, 3-player zero-sum is hard (with a dummy player)
I With a polymatrix payo↵ structure (Cai et al., 2016) (below for

agent i and some graph G := ([n], E)), it enjoys equilibrium
collapse: CCE=NE

r
i (a) =

X

j :(i,j)2E

r
i,j(ai , aj)

I What about stochastic games?

I One can define this polymatrix structure for each auxiliary game’s payo↵
induced by any value vector V [P⇤Z⇤O, ’23]:

Q
i
V (s, a) := r

i (s, a) + �
X

s0

p(s 0 | s, a)V (s 0) =
X

j :(i,j)2E

Q
i,j
V (ai , aj)

I It covers polymatrix reward + single-controller/turn-based/additive
structures (Flesch et al., 2007)



Beyond Canonical SGs: Multi-player Zero-sum SGs

I Markov CCE collapses to Markov NE [P⇤Z⇤O, ’23]

I Non-stationary NE can be easy (by finding non-stationary CCE)

I Concurrent work (Kalogiannis and Panageas, 2023) defines a di↵erent
model: polymatrix reward + switching controller transition

I Di↵erent techniques for equilibrium collapse, based on the
nonlinear program introduced in Part I
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Beyond Canonical SGs: Stochastic/Markov Potential
Games

I We have mostly talked about “non-cooperative” settings, what about
“(near-)cooperative” ones?

I Some early definitions in (Marden, 2012; Macua et al., 2018); recently,
Markov potential games (Leonardos et al., 2022; Zhang et al., 2024a):
there exists a potential function � s.t. for each state s and all agents i

�⇡i ,⇡�i (s)� �e⇡i ,⇡�i (s) = V
i
⇡i ,⇡�i (s)� V

i
e⇡i ,⇡�i (s)

I Potential reward < Markov potential game (Leonardos et al., 2022)

I This model thus addresses mixed cooperative/competitive agents
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Beyond Canonical SGs: Linear Quadratic Dynamic Games

I The “tabular case” for continuous space settings

I Two-player zero-sum linear quadratic (LQ) dynamic games:

r(s, a, b) = �s>Qs � a
>
R

1
a+ b

>
R

2
b,

sh+1 = Ash + B
1
ah + B

2
bh + wh

I An old model (Başar and Bernhard, 1995), receives increasing attention
in MARL in recent years [ZYB, ’19; ZHB, ’20] and (Bu et al., 2019; Wu
et al., 2023)

I Has a deep connection to risk-sensitive control and H1 robust control
(Whittle, 1981; Başar and Bernhard, 1995)

I General-sum case can also be defined (Başar and Olsder, 1998;
Mazumdar et al., 2020; Hambly et al., 2023; Aggarwal et al., 2024), as
well as the potential case (Hosseinirad et al., 2024)
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Beyond SGs: Networked/Distributed MARL

I Non-game-theoretic cooperative setting: a group of networked agents

max
{⇡i}i2[n]

E

2

4
X

t�0

�t

0

@1
n

X

i2[n]

r
i
t

1

A

3

5

with neighbor-to-neighbor communications

I Centralized 4 v.s. Distributed/Networked 8

I Scalable to large-number of agents
I Resilient to attacks
I Better preserve the privacy of each agent
I Distributed/Consensus optimization for static problems (Xiao

et al., 2007; Nedic and Ozdaglar, 2009; Duchi et al., 2011)
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Beyond SGs: Networked/Distributed MARL

I For dynamic decision-making problems:

I (Kar et al., 2013) for Q-learning; [ZYLZB, ’18] for actor-critic
I Many followups (Wai et al., 2018; Doan et al., 2019, 2021; Lee

et al., 2018; Chu et al., 2019; Figura et al., 2021; Zhang and
Zavlanos, 2019; Sun et al., 2020; Stanković et al., 2023)

I Recent advances: (Qu et al., 2020, 2022; Zhang et al., 2023; Zhou
et al., 2023; Olsson et al., 2024)

I With additional locality assumptions on the reward/transition =)
local policies su�ce



Beyond SGs: Other Models

I Partially-observable SGs:

I In practice, the system state is almost never observable
I Additionally, each agent may not have other agents’ observations –

asymmetric information structure/decentralized decision-making

o
i
t ⇠ Oi (· | st), a

i
t ⇠ ⇡i,t(· | o i

1, a
i
1, o

i
2, a

i
2, · · · , o i

t)

I Many known (computational) hardness results (Witsenhausen,
1968; Tsitsiklis and Athans, 1985) from the Control literature

I Recently, (Liu et al., 2022a; Qiu et al., 2024) focused on
sample-e�ciency (polynomial sample complexities)

I Further, [LZ, ’23] established (quasi-)polynomial sample and
computation complexities, by exploiting the “information-sharing”
formalism from decentralized stochastic control (Mahajan, 2008;
Nayyar et al., 2013b,a)
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Beyond SGs: Other Models

I Team setting: one-vs-team (adversarial team Markov games)
(Kalogiannis et al., 2023)

I E�cient computation algorithm for ✏-stationary Nash equilibrium



Beyond SGs: Other Models

I Mean-field setting: large population of agents with interactions through
mean-field state/population distribution µ 2 �(S)

r
i (s, a) =) r(s, a, µ), p(s 0 | s, a) =) p(s 0 | s, a, µ)

I Provable mean-field RL (Guo et al., 2019; Perrin et al., 2020; Xie
et al., 2021a; Cui and Koeppl, 2021; Pérolat et al., 2022; Geist
et al., 2022; Anahtarci et al., 2023; Guo et al., 2023a; Yardim
et al., 2023; Huang et al., 2024b,a; Ramponi et al., 2024)

I Computation: it can be PPAD-hard with only Lipschitz dynamics
and rewards (Yardim et al., 2024)



Part II.C: New Algorithm Class:
Policy Optimization for MARL



New Algorithm Class: Policy Optimization
I In practice, policy gradient/optimization methods, e.g., proximal policy

optimization (PPO) (Schulman et al., 2017), are very useful (default)

I Recent advances in understanding policy gradient (PG) methods (Cai
et al., 2020; Wang et al., 2020; Agarwal et al., 2021; Bhandari and
Russo, 2024; Cen et al., 2022; Fatkhullin et al., 2023) and many more

I Policy gradient methods for MARL: parameterize each agent’s policy ⇡i

as ⇡i
✓i , and run gradient ascent
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Partial Gradient Dominance Property
I A simple but useful fact — “partial” gradient-dominance: assume

d✓(·) > 0 (simulator setting; good data coverage; it holds if ⇢(·) > 0)

performance di↵erence lemma (Kakade and Langford, 2002)
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see also [ZYB ’19], (Mazumdar et al., 2019) (for LQ cases) and
(Daskalakis et al., 2020; Leonardos et al., 2022; Zhang et al., 2024a)
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Policy Optimization for Two-player Zero-sum SGs

I The former result implies:

1st-order stationary point ✓⇤ =) ✓i⇤ best-responds to ✓�i
⇤ , 8 i =) NE ✓⇤

I Not easy for zero-sum, as max
✓1

min
✓2

V (✓1, ✓2) is nonconvex-nonconcave

I (Daskalakis et al., 2020): policy gradient for two-player zero-sum SGs
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with ↵ ⇣ ✏10.5 and � ⇣ ✏6, i.e., ↵⌧ �

I Asymmetric stepsizes between the two players
I With asymmetric (player 1) convergence to ✏-NE in poly samples
I Echoing back to the asymmetry in PI (Ho↵man and Karp, 1966;

Condon, 1990; Filar and Tolwinski, 1991; Patek, 1997; Bertsekas,
2021; Brahma et al., 2022) (for monotonicity)!



Policy Optimization for Two-player Zero-sum SGs

I The former result implies:

1st-order stationary point ✓⇤ =) ✓i⇤ best-responds to ✓�i
⇤ , 8 i =) NE ✓⇤

I Not easy for zero-sum, as max
✓1

min
✓2

V (✓1, ✓2) is nonconvex-nonconcave

I (Daskalakis et al., 2020): policy gradient for two-player zero-sum SGs

✓1k+1  Proj
⇥
✓1k + ↵ ·r✓1V

�
✓1k , ✓

2
k

�⇤

✓2k+1  Proj
⇥
✓2k � � ·r✓2V

�
✓1k , ✓

2
k

�⇤

with ↵ ⇣ ✏10.5 and � ⇣ ✏6, i.e., ↵⌧ �

I Asymmetric stepsizes between the two players
I With asymmetric (player 1) convergence to ✏-NE in poly samples
I Echoing back to the asymmetry in PI (Ho↵man and Karp, 1966;

Condon, 1990; Filar and Tolwinski, 1991; Patek, 1997; Bertsekas,
2021; Brahma et al., 2022) (for monotonicity)!



Policy Optimization for Two-player Zero-sum SGs

I The former result implies:

1st-order stationary point ✓⇤ =) ✓i⇤ best-responds to ✓�i
⇤ , 8 i =) NE ✓⇤

I Not easy for zero-sum, as max
✓1

min
✓2

V (✓1, ✓2) is nonconvex-nonconcave

I (Daskalakis et al., 2020): policy gradient for two-player zero-sum SGs

✓1k+1  Proj
⇥
✓1k + ↵ ·r✓1V

�
✓1k , ✓

2
k

�⇤

✓2k+1  Proj
⇥
✓2k � � ·r✓2V

�
✓1k , ✓

2
k

�⇤

with ↵ ⇣ ✏10.5 and � ⇣ ✏6, i.e., ↵⌧ �

I Asymmetric stepsizes between the two players
I With asymmetric (player 1) convergence to ✏-NE in poly samples

I Echoing back to the asymmetry in PI (Ho↵man and Karp, 1966;
Condon, 1990; Filar and Tolwinski, 1991; Patek, 1997; Bertsekas,
2021; Brahma et al., 2022) (for monotonicity)!



Policy Optimization for Two-player Zero-sum SGs

I The former result implies:

1st-order stationary point ✓⇤ =) ✓i⇤ best-responds to ✓�i
⇤ , 8 i =) NE ✓⇤

I Not easy for zero-sum, as max
✓1

min
✓2

V (✓1, ✓2) is nonconvex-nonconcave

I (Daskalakis et al., 2020): policy gradient for two-player zero-sum SGs

✓1k+1  Proj
⇥
✓1k + ↵ ·r✓1V

�
✓1k , ✓

2
k

�⇤

✓2k+1  Proj
⇥
✓2k � � ·r✓2V

�
✓1k , ✓

2
k

�⇤

with ↵ ⇣ ✏10.5 and � ⇣ ✏6, i.e., ↵⌧ �

I Asymmetric stepsizes between the two players
I With asymmetric (player 1) convergence to ✏-NE in poly samples
I Echoing back to the asymmetry in PI (Ho↵man and Karp, 1966;

Condon, 1990; Filar and Tolwinski, 1991; Patek, 1997; Bertsekas,
2021; Brahma et al., 2022) (for monotonicity)!



Policy Optimization for Two-player Zero-sum SGs
I Other policy optimization methods that are also asymmetric: (Guo

et al., 2021; Zhao et al., 2022; Alacaoglu et al., 2022; Zeng et al., 2022)

I Is it possible to have a symmetric one?

I A variant of policy optimization (Wei et al., 2021): optimistic gradient
descent-ascent (full-information version)
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I (Wei et al., 2021): last-iterate convergence rate, symmetric, and rational

I Other policy optimization methods that are also symmetric, with such a
smooth critic framework: (Chen et al., 2022b; Zhang et al., 2022a; Cen
et al., 2023; Song et al., 2023; Yang and Ma, 2023; Cai et al., 2024b)

I Variants on the actor step yield various convergence guarantees:
faster rate, last-iterate, Markov sampling, etc.
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Policy Optimization for Markov Potential Games

I In contrast, the partial gradient dominance property might be a blessing
for the potential case

I Policy gradient =) gradient descent for (a smooth) potential
value function =) conv. to stationary-point =) conv. to NE

I Indeed, (Leonardos et al., 2022; Zhang et al., 2024a) leveraged this

I Other results:

I Work [DWZJ, ’22] took a di↵erent route and developed a new
second-order performance di↵erence lemma to sharpen the rates
and incorporate function approximation

I Generalization to other policy optimization methods, e.g., natural
PG (Fox et al., 2022; Sun et al., 2023) and/or with regularization
(Zhang et al., 2022b; Sun et al., 2024), other parameterization
(Zhang et al., 2022b), online exploration (Song et al., 2022),
average-reward (Cheng et al., 2024), networked (Aydın and Eksin,
2023), and near-potential settings (Guo et al., 2023b)
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Policy Optimization for General-sum SGs

I The smooth critic framework can also be generalized to finite-horizon
general-sum SGs: (Zhang et al., 2022a; Erez et al., 2023; Cai et al.,
2024a; Mao et al., 2024) for (C)CE computation/learning

I Other notable results (both exploit the gradient dominance property):

I (Anagnostides et al., 2024): ✏-NE can be e�ciently found for
single-controller + equilibrium collapse (e.g., two-player or
polymatrix zero-sum) cases

I (Giannou et al., 2022): second-order stationary NE are locally
attracting for policy gradient
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Policy Optimization for Linear Quadratic Games

I Parameterization w.l.o.g: ah = �Ksh and bh = �Lsh (Başar and
Bernhard, 1995)

Theorem (ZYB, ’19; ZHB, ’20; ZZHB, ’20)

For two-player zero-sum LQ games, maxK minL V (K , L) is a nonconvex-nonconcave

minimax optimization in (K , L), but has the partial gradient dominance property.

Also, double-loop policy optimization converges globally to the Nash equilibrium

with sublinear rates.

I Double-loop policy optimization:



Policy Optimization for Linear Quadratic Games

I Parameterization w.l.o.g: ah = �Ksh and bh = �Lsh (Başar and
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Policy Optimization for Linear Quadratic Games
I Challenges: continuous and unbounded spaces; no global smoothness

I One has to control the iteration path carefully to stay in certain sets

I Much faster than existing H1-robust control methods even for
computation purposes [ZHB, ’20]
I No need for linear matrix inequality/semi-definite program (Boyd

et al., 1994), but just policy parameter-space search –
dimension-friendly

I Finite-sample analysis with zeroth-order sampling [ZZHB, ’20]

I Recent improved sample complexity in (Wu et al., 2023)

I Generalization to general-sum settings:
I Negative (local) convergence result (Mazumdar et al., 2020)
I Recent advances (Hambly et al., 2023; Aggarwal et al., 2024;

Hosseinirad et al., 2024)
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Part III: Why Multi-agent RL?
A Learning-in-Games Perspective



Multi-agent Reinforcement Learning
I Received broad research interest from ML, Econ, Control, and Alg.

Game Theory (with an increasing number of workshops/programs at
Simons Institute, NeurIPS, ICML, ICLR, CDC ... over the years)

I All these recent exciting advances introduced so far; I personally have
contributed to it during Ph.D.

I But ...

Why multi-agent reinforcement learning?
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An Intriguing Question I Had Been Thinking About

If multi-agent learning is the answer, what is the question?

— Yoav Shoham, 2005

I Polynomial sample & space complexity?

I Online exploration/O✏ine learning & sublinear regret?

I Faster “equilibrium” computation? Its computational complexity?

Does this multi-agent perspective really present new and unique
challenges for (sequential) decision-making?
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Is “Finding Equilibrium” all We Need/Have Got?

I One traditional explanation of (Nash) equilibrium:

It results from analysis and introspection by the players, knowing the rules of
the game, the rationality of the players, and payo↵ functions

I An alternative from Learning-in-Games and Economics literature
[Fudenberg & Levine, ’98]:

Equilibrium arises (naturally) as the long-run outcome of a process in which
less than fully rational players grope for optimality over time

I I.e., equilibrium is not the target, but the natural outcome of
myopic and non-equilibrating learning dynamics (from each other)

I The agents may not even realize they are in a game
I With laboratory evidence (with human participants) – e.g., Nagel’s

beauty contest experiment [Nagel ’95][Du↵y and Nagel, ’97]
I “As a ‘predictive model’ for decision-makers’ long-term behaviors”
I “Learning dynamics is not a computational algorithm”

I Though as an algorithm, it can be bad/slow!
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An Example: Fictitious-Play & Nash Equilibrium

I This perspective has been well-established in normal-form/matrix
games, see e.g., [Fudenberg & Levine, ’98]

I Fictitious-play [Brown, ’51]:

Belief Update: For agent i maintains belief ⇡̂�i
k at time k,

⇡̂�i
k+1 = ⇡̂�i

k +
1
k
· (a�i

k � ⇡̂�i
k ),

Action Selection: The action a
i
k is taken from best-response

a
i
k 2 argmax

ai

n
(ai )TQ i ⇡̂�i

k

o
.

I Nash equilibrium emerges in the long-run, for several classes of
matrix games, zero-sum [Robinson, ’51], identical-interest
[Monderer and Shapley, ’96], 2⇥ 2 non-zero-sum [Miyasawa, ’61]

I Natural, symmetric, and independent (coordination-free) dynamics
I Though it can be slow as a “computational algorithm” [Robinson,

’51][Daskalakis and Pan, ’14]
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I Nash equilibrium emerges in the long-run, for several classes of
matrix games, zero-sum [Robinson, ’51], identical-interest
[Monderer and Shapley, ’96], 2⇥ 2 non-zero-sum [Miyasawa, ’61]

I Natural, symmetric, and independent (coordination-free) dynamics
I Though it can be slow as a “computational algorithm” [Robinson,

’51][Daskalakis and Pan, ’14]



A “Learning-in-Games” Perspective of MARL

Is this also true in dynamic games with states/as in RL?

I “Long-run outcome” [Fudenberg & Levine, ’98] suggests us to focus on
games without reset, i.e., infinite-horizon SGs [Shapley, ’53][Fink, ’64]

If “not” in general, maybe it’s fine to just embrace it (as a solution concept)?

“In praise of game dynamics” “Let the dynamics show you the way”

— Christo Papadimitriou (at Simons Institute), 2022
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On the Other Hand, in (Empirical) Multi-agent RL..

I Independent learning (IL): each agent runs (variants) of single-agent RL
algorithms, to myopically improve her policies, sometimes even oblivious
to other agents or the type of the game

I Technically, IL is known to su↵er from convergence issues [Condon, ’90],
[Tan, ’93], [Claus and Boutilier, ’98]

I Due to the key issue in multi-agent RL: non-stationarity
I Other agents’ learning and adapting processes break the stationary

MDP assumption from a single-agent’s perspective

I Practically, IL seems to perform well (better than I expected)..

I “Is independent learning all you need in the StarCraft multi-agent
challenge?” [Witt et al., ’20]

I “The surprising e↵ectiveness of PPO in cooperative multi-agent
games,” [Yu et al., ’21]

I “Independent algorithms can perform on par with multi-agent ones
in cooperative and competitive settings,” [Lee et al., ’21]

I “Decentralized reinforcement learning control of a robotic
manipulator,” [Buşoniu et el., ’06]

I ...
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manipulator,” [Buşoniu et el., ’06]

I ...



On the Other Hand, in (Empirical) Multi-agent RL..
I Independent learning (IL): each agent runs (variants) of single-agent RL

algorithms, to myopically improve her policies, sometimes even oblivious
to other agents or the type of the game

I Technically, IL is known to su↵er from convergence issues [Condon, ’90],
[Tan, ’93], [Claus and Boutilier, ’98]

I Due to the key issue in multi-agent RL: non-stationarity
I Other agents’ learning and adapting processes break the stationary

MDP assumption from a single-agent’s perspective

I Practically, IL seems to perform well (better than I expected)..

I “Is independent learning all you need in the StarCraft multi-agent
challenge?” [Witt et al., ’20]

I “The surprising e↵ectiveness of PPO in cooperative multi-agent
games,” [Yu et al., ’21]

I “Independent algorithms can perform on par with multi-agent ones
in cooperative and competitive settings,” [Lee et al., ’21]

I “Decentralized reinforcement learning control of a robotic
manipulator,” [Buşoniu et el., ’06]
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Question of Interest

Can (Nash) equilibrium be realized by natural and independent learning

dynamics in stochastic games?

I If so (in some cases), then it might in turn justify the success of
independent learning in multi-agent RL (in certain cases)

I If not (in general), is there any possible fundamental reason?
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Independent Learning Made Simple

We identify simple independent learning dynamics that have Nash equilibrium
emerge in the long run for certain stochastic games

I The learning dynamics requires no explicit coordination among agents,
is symmetric and natural (simple variant of single-agent dynamics, e.g.,
vanilla independent Q-learning [Claus and Boutilier, ’98])

I Each agent is unaware of the type of the game (e.g., zero-sum or not),
and sometimes even unaware of the existence of other agents
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Decentralized Q-learning Dynamics
I Goal: as similar as vanilla independent Q-learning [Watkins, 89], with

no awareness of the opponents’ action (set) nor even their existence

I Recall the local Q function of player i

q
i
⇡(s, a

i ) := Ea�i⇠⇡�i
s

�
Q

i
⇡(s, a

i , a�i )
 
, 8 (s, ai )

I Step 1: Player i infers the opponent’s strategy by estimating the local
Q-function q

i
⇡k
(s, ai )

I Q-learning-type update

q̂
i
sk ,k+1[a

i
k ] = q̂

i
sk ,k [a

i
k ] + ↵]sk

�
r
i
k + � · v̂ i

sk+1,k � q̂
i
sk ,k [a

i
k ]
�
,

where a
i
k ⇠ ⇡̄i

k , and ⇡̄i
k the smooth best-response w.r.t. q̂isk ,k :

⇡̄i
k := argmax

µ2�(Ai
sk
)

�
µT

q̂
i
sk ,k + ⌧]sk · ⌫ isk (µ)

 

with some perturbation function ⌫ isk (µ), e.g., entropy function, and
the temperature parameter ⌧]sk > 0

I Recall: Vanilla independent Q-learning (single-agent dynamics)

q̂
i
sk ,k+1[a

i
k ] = q̂

i
sk ,k [a

i
k ] + ↵]sk

⇣
r
i
k + � ·max

a0
q̂
i
sk+1,k [a

0]� q̂
i
sk ,k [a

i
k ]
⌘
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Decentralized Q-learning Dynamics

I Step 2: Player i estimates the value function v̂
i
s,k

v̂
i
sk ,k+1 = v̂

i
sk ,k + �]sk

�
(⇡̄i

k)
T
q̂
i
sk ,k � v̂

i
sk ,k

�

I All the quantities are maintained locally, without coordination or
communication, and symmetric among agents (di↵erent from many
existing provable MARL algorithms (at that time :)))
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Features of the Learning Dynamics
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sk ,k � v̂

i
sk ,k
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I Two-timescale: limc!1
�c

↵c
= 0, so that the payo↵s of the auxiliary

game is relatively stationary

I As if solving an auxiliary normal-form game with payo↵ matrix
h
r
i
s (a) + �

X

s0

p(s 0 | s, a)v̂ i
s0,k

i

a2A

I The relatively frozen v̂
i
s0,k is similar to target network in (deep,

single-agent) Q-learning [Mnih et al., ’15]
I Then update v̂

i
s0,k as the stochastic approximation of minimax

value iteration [Shapley, ’53] (thus �-contracting): key to the
convergence!
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Features of the Learning Dynamics

I This timescale separation may also find evidence in the literature on
Evolutionary Game Theory and Behavioral Economics [Ely and
Yilankaya ’01], [Sandholm ’01]: players’ choices are more dynamic than
their preferences

I The payo↵s in auxiliary games (determined by v̂
i
s,k) can be viewed

as slowly evolving player preferences

I Oblivious to the presence of the opponent: radically uncoupled
dynamics [Foster & Young, ’06]



Features of the Learning Dynamics

I This timescale separation may also find evidence in the literature on
Evolutionary Game Theory and Behavioral Economics [Ely and
Yilankaya ’01], [Sandholm ’01]: players’ choices are more dynamic than
their preferences

I The payo↵s in auxiliary games (determined by v̂
i
s,k) can be viewed

as slowly evolving player preferences

I Oblivious to the presence of the opponent: radically uncoupled
dynamics [Foster & Young, ’06]



Convergence Guarantees: Zero-sum Stochastic Games

Theorem (S⇤Z⇤LBO, ’21)

Under standard assumptions on the stepsizes {↵c , �c}c�1, certain decreasing

rate of the temperature parameter {⌧c}c�1, and certain reachability

assumption of the states, we have

lim
k!1

|v̂ i
s,k � V

i
⇡⇤(s)| = 0

almost surely. Moreover, the (weighted-)time-average policy of {⇡̄i
k}k�1 also

converges to the Nash equilibrium policy almost surely.

I A Corollary: The learning dynamics is (not only convergent but) also
rational [Bowling and Veloso ’01]

I “Can exploit a weaker opponent”
I Thus natural and rational to follow the dynamics in the first place

I Some finite sample analyses for the double-loop (instead of
two-timescale) versions: [CZMOW, ’23; ’24] and (Ouhamma and
Kamgarpour, 2023)
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I Thus natural and rational to follow the dynamics in the first place

I Some finite sample analyses for the double-loop (instead of
two-timescale) versions: [CZMOW, ’23; ’24] and (Ouhamma and
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How further can we go with such learning dynamics?



Fictitious-play Property and Game-agnostic Convergence

I One desired property of independent learning dynamics: It is
game type-agnostic

I Recall fictitious-play [Brown, ’51]

Belief Update: For agent i maintains belief ⇡̂�i
k at time k,

⇡̂�i
k+1 = ⇡̂�i

k +
1
k
· (a�i

k � ⇡̂�i
k ),

Action Selection: The action a
i
k is taken from best-response

a
i
k 2 argmax

ai

n
(ai )TQ i ⇡̂�i

k

o
.

I The same update rule from each agent’s perspective, converges to
NE in zero-sum, identical-interest, 2⇥ 2 non-zero-sum games, etc.

I Used to be one way to justify the universality of Nash equilibrium
I “A game has the fictitious play property (FPP) if fictitious play

process converges to its equilibrium” [Monderer and Shapley, ’96]

What about stochastic/dynamic games?
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Fictitious-play Property and Game-agnostic Convergence

I FPP can appear in SGs (with two-timescale stepsizes (as our decentralized
Q-learning))

Belief Update:

⇡̂�i
sk ,k+1 = ⇡̂�i

sk ,k
+ ↵]sk (a

�i
k � ⇡̂�i

sk ,k
)

Q-Value Update:
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i
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i
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r
i
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s02S
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i
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i
sk ,k(a)

!
,

where the action a
i
k is taken from best-response

a
i
k 2 argmax

ai

n
(ai )T Q̂ i

sk ,k ⇡̂
�i
sk ,k

o
.

I This very same (smoothed) fictitious-play dynamics converge to Nash
equilibrium for zero-sum (competitive) and n-player identical-interest
(cooperative) [SZO, ’22][ZSO, ’23], and multi-player zero-sum stochastic
games [P⇤Z⇤O, ’22], i.e., they have FPP
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General-sum Cases?

I Recall: for finite-horizon case, there exists an independent algorithm as
V-learning that can address general-sum SGs (CE,CCE)

I Recall: for infinite-horizon case, value(-iteration) based approaches
cannot find stationary equilibrium in general – the “NoSDE” games
[Zinkevich, Greenwald, Littman, ’05]

I Our decentralized-Q learning cannot, either, as its convergence relies on
the minimax value iteration (�-contracting property of the operator)
(breaks in the general-sum case)

I It is unclear how to construct stationary equilibrium from
non-stationary ones (cannot simply truncate and pick the strategy
at h = 1, as in single-agent RL)

Is there a fundamental reason why infinite-horizon general-sum SGs are
challenging? Is there a unique challenge compared to the finite-horizon case?
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General-sum Cases?

I There might be one

Theorem (DGZ, ’23)

For some constant ✏ > 0, computing ✏-(perfect) stationary CCE in 2-player
stochastic games with discount factor � = 1/2 is PPAD-hard.

I Believed to be intractable computationally [Papadimitriou, ’94]

I Even 2-player and � = 1/2, i.e., two stages in expectation

I This is in stark contrast to normal-form/static games, where CCE is
tractable – showing the unique challenge in sequential and strategic
decision-making

I Concurrent work (Jin et al., 2023b): similar hardness with |S|-agents
I Relaxing the stationary requirement enables a decentralized learning

algorithm SPoCMAR with polynomial sample complexity (including the
number of agents) to output a Markov equilibrium [DGZ, ’23]

I “Break the curse of multi-agents” with Markov equilibrium output
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Other Independent Learning Dynamics/Algorithms?

I All independent policy gradient methods!

I Also referred to as “gradient play” (Shamma and Arslan, 2005), a
kind of better response (as opposed to best-response)

I Especially for Markov potential games as vanilla independent and
symmetric PG simply works (Leonardos et al., 2022; Zhang et al.,
2024a; Fox et al., 2022) [DWZJ, ’22]

I The smooth critic variant has game-agnostic convergence to NE
(zero-sum and identical-interest) (Wei et al., 2021), [DWZJ, ’22]

I (Giannou et al., 2022): the long-run (local) behaviors of
(symmetric) independent policy gradient for general-sum
stochastic games

I For finite-horizon setting: V-learning (Jin et al., 2023a; Song et al.,
2022; Mao and Başar, 2022)
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Other Independent Learning Dynamics/Algorithms?

I Another large class of independent learning algorithms: no-regret
learning (in the adversarial sense)

Regret(⇡1, · · · ,⇡K ;K ) := max
⇡i2⇧i

KX

k=1

⇣
V

i,1

⇡i⇥⇡�i
k

� V
i,1
⇡k

⌘

for any sequence of product policies {⇡1, · · · ,⇡K}
I If it can be made small (i.e., ✏ · K ), then a uniform average of

⇡̄ := 1
K

PK
k=1 I⇡k is an ✏-CCE

I However, it is both statistically (Kwon et al., 2021; Liu et al.,
2022b) and computationally (Abbasi Yadkori et al., 2013;
Radanovic et al., 2019; Bai et al., 2020) intractable in general to
achieve no-regret

I Intractable even when all agents independently run an algorithm
(not arbitrarily adversarial) (Foster et al., 2023b)

I Possible if revealing the opponents’ policy in the end of each
episode (Liu et al., 2022b; Zhan et al., 2023) or ⇧i restricted to a
Markov policy class (Erez et al., 2022)
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Concluding Remarks



Summary

I Multi-agent RL (theory) has expanded significantly in recent years
(though we haven’t really fully understood the success of AlphaGo)

I Mostly regarding (e�cient) learning of stochastic games (Shapley, 1953;
Fink et al., 1964; Takahashi, 1964)

I Classical algorithms with asymptotic convergence guarantees

I Modern algorithms with new (and mostly) non-asymptotic guarantees
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Arslan, G. and Yüksel, S. (2017). Decentralized Q-learning for stochastic teams and games. IEEE Transactions on
Automatic Control, 62 1545–1558.

Aydın, S. and Eksin, C. (2023). Networked policy gradient play in Markov potential games. In ICASSP 2023-2023 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE.

Bai, Y. and Jin, C. (2020). Provable self-play algorithms for competitive reinforcement learning. In International
Conference on Machine Learning.

Bai, Y., Jin, C. and Yu, T. (2020). Near-optimal reinforcement learning with self-play. Advances in Neural Information
Processing Systems, 33.
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Lattimore, T. and Szepesvári, C. (2020). Bandit algorithms. Cambridge University Press.

Lee, D. (2023). Finite-time analysis of minimax Q-learning for two-player zero-sum Markov games: Switching system
approach. arXiv preprint arXiv:2306.05700.



Lee, D., Yoon, H. and Hovakimyan, N. (2018). Primal-dual algorithm for distributed reinforcement learning:
distributed GTD. In IEEE Conference on Decision and Control.

Leonardos, S., Overman, W., Panageas, I. and Piliouras, G. (2022). Global convergence of multi-agent policy
gradient in Markov potential games. In International Conference on Learning Representations.

Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J. and Quillen, D. (2018). Learning hand-eye coordination for
robotic grasping with deep learning and large-scale data collection. The International Journal of Robotics Research,
37 421–436.

Li, G., Chi, Y., Wei, Y. and Chen, Y. (2022). Minimax-optimal multi-agent RL in Markov games with a generative
model. Advances in Neural Information Processing Systems, 35 15353–15367.

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning. In Machine Learning
Proceedings. Elsevier, 157–163.

Littman, M. L. (2001). Friend-or-foe Q-learning in general-sum games. In International Conference on Machine
Learning, vol. 1.
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Szepesvári, C. (2022). Algorithms for reinforcement learning. Springer Nature.
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