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Background

Kaiqing Zhang (kaiging@umnd.edu) Understanding (Cost-Driven) Representation Learning for Control 3



“Robot learning” has fascinated me

® Me entering the Robot Learning (as well as the “Modern RL” world)...

And many many more...

OpenAl, 2018 Marco Hutter’s group at Russ Tedrake’s group, MIT, 2018
ETH Zurich, 2021

Can we try to understand some ideas/principles behind them a bit more?
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“State representation” for control

e Control and reinforcement learning (RL) are predominantly based on state-space dynamic models

® In practical (learning for) control systems, e.g., robotic manipulation, the observations, e.g.,
images, are usually high-dimensional

Ep
K C

What is a good and how to it from
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“Latent model learning” for control

® Many empirical works have attempted to learn a latent model for control
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Sources: Left and middle: “Mastering Diverse Domains through World Models.” Right: https:/ / online-go.com/.
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Latent model learning

latent model learning
o

data —

latent policy learning

Interface with the environment are 3 quantities: observations, actions, costs

Sources: “Dream to Control: Learning Behaviors by Latent Imagination.”
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Setup: Control in a partially observable system

e A sequential decision-making problem with time indices t = 0,1,2,---

e Atstept > 0, agent observes y,

e Policy/Controller determines action/control u, based on history h, = (Yo, Ugs ---» Y, 15 Us_15 V;)
® Incur cost ¢, at time ¢

e Finite horizon 7, trajectory (Yo, Uy, Cos ---» Y715 Up_1> CT—15 Y75 CT)

o Special case: if P (x| x;, 1) and PP (v, | x,), then it covers partially observed Markov

decision processes (POMDP), with broad applications
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Anatomy of empirical latent model learning

e Representation function gives latent state by z, = ¢(z,_, u,_1,y,) or z, = ¢ ,(h,)
e [atent dynamics z,,; = f(z,, u,), latent cost ¢(z,, u,) = latent policy y(u,]| z,)

e Overall policy (y; ¢, rT=_()1

Vi L = th(ht)
system { representation * latent policy
= (y; ° @) (1)
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Motivation
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Empirical latent model learning methods

Many empirical works have attempted to learn a latent model for control

® Value Prediction Network (Oh et al., 2017)

Value Prediction Network

Junhyuk Oh"T  Satinder Singh  Honglak Lee*!
"University of Michigan
*Google Brain
{junhyuk,baveja,honglak}@umich.edu, honglak@google.com
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Empirical latent model learning methods

Many empirical works have attempted to learn a latent model for control
® Value Prediction Network (Oh et al., 2017)
e Self-Supervised Prediction (Pathak et al., 2017)

Curiosity-driven Exploration by Self-supervised Prediction

Deepak Pathak ' Pulkit Agrawal' Alexei A. Efros' Trevor Darrell !
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Empirical latent model learning methods

111 ) gm configurt&r
Many empirical works have attempted to learn a latent model for control A3

® Value Prediction Network (Oh et al., 2017)
e Self-Supervised Prediction (Pathak et al., 2017)
e World Models (Ha and Schmidhuber, 2018)

-
~/f (Critie)
Cost

“ A path towards autonomous machine intelligence” — Yann LeCun

/

World Models

David Ha! Jiirgen Schmidhuber ?°
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Empirical latent model learning methods

Many empirical works have attempted to learn a latent model for control
® Value Prediction Network (Oh et al., 2017)

e Self-Supervised Prediction (Pathak et al., 2017)

e World Models (Ha and Schmidhuber, 2018)

e PlaNet (Hafner et al., 2019)

Learning Latent Dynamics for Planning from Pixels

Danijar Hafner !> Timothy Lillicrap® Ian Fischer* Ruben Villegas '
David Ha! Honglak Lee'! James Davidson !
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Empirical latent model learning methods

Many empirical works have attempted to learn a latent model for control
® Value Prediction Network (Oh et al., 2017)

e Self-Supervised Prediction (Pathak et al., 2017)

e World Models (Ha and Schmidhuber, 2018)

e PlaNet (Hafner et al., 2019)

e MuZero (Schrittwieser et al., 2020)

Mastering Atari, Go, chess and shogi by
planning with alearned model

https://doi.org/10.1038/s41586-020-03051-4  Julian Schrittwieser'?, loannis Antonoglou'*?, Thomas Hubert"?, Karen Simonyan’,
Received: 3 April 2020 Laurent Sifre', Simon Schmitt', Arthur Guez', Edward Lockhart', Demis Hassabis',

i Thore Graepel'?, Timothy Lillicrap' & David Silver'23*
Accepted: 7 October 2020
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Empirical latent model learning methods

Many empirical works have attempted to learn a latent model for control
® Value Prediction Network (Oh et al., 2017)

e Self-Supervised Prediction (Pathak et al., 2017)

e World Models (Ha and Schmidhuber, 2018)

e PlaNet (Hafner et al., 2019)

e MuZero (Schrittwieser et al., 2020)

® Deep Bisimulation (Zhang et al., 2021)

LEARNING INVARIANT REPRESENTATIONS FOR REIN-
FORCEMENT LEARNING WITHOUT RECONSTRUCTION

Amy Zhang*'? Rowan McAllister*®>  Roberto Calandra®? Yarin Gal* Sergey Levine®

McGill University

2Facebook Al Research

3University of California, Berkeley
*OATML group, University of Oxford
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Empirical latent model learning methods

Many empirical works have attempted to learn a latent model for control
® Value Prediction Network (Oh et al., 2017)

e Self-Supervised Prediction (Pathak et al., 2017)

e World Models (Ha and Schmidhuber, 2018)

® PlaNet (Hafner et al,, 2019) Guaranteed Discovery of Control-Endogenous Latent States
® MuZero (Schrittwieser et al., 2020) with Multi-Step Inverse Models

® Deep Bisimulation (Zhang et al., 2021)

Alex Lamb*!, Riashat Islam!?, Yonathan Efroni', Aniket Didolkar?
Dipendra Misra'!, Dylan Foster!, Lekan Molu'!, Rajan Chari!

o AC-State (Lamb et al. 2022) Akshay Krishnamurthy', John Langford*!
! I Microsoft Research NYC, New York, USA

2 School of Computer Science, McGill University, Montreal, Canada
3 Department of Computer Science, University of Montreal, Montreal, Canada
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Empirical latent model learning methods

Many empirical works have attempted to learn a latent model for control

Kaiqing Zhang (kaiging@umd.edu)

Value Prediction Network (Oh et al., 2017)

Self-Supervised Prediction (Pathak et al., 2017)

World Models (Ha and Schmidhuber, 2018)

PlaNet (Hafner et al., 2019) DREAM TO CONTROL: LEARNING BEHAVIORS

P BY LATENT IMAGINATI
MuZero (Schrittwieser et al., 2020) N GINATION

o . Danijar Hafner * Timothy Lillicrap  Jimmy Ba Mohammad Norouzi
Deep Bisimulation (Zhang et al. p 2021 ) University of Toronto ~ DeepMind University of Toronto ~ Google Brain
Google Brain
AC-State (Lamb et al., 2022)

Dreamer, DreamerV2, DreamerV3 (Hafner et al., 2020; 2021; 2023)
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Empirical latent model learning methods

Many empirical works have attempted to learn a latent model for control
® Value Prediction Network (Oh et al., 2017)

e Self-Supervised Prediction (Pathak et al., 2017)

e World Models (Ha and Schmidhuber, 2018)

® PlaNet (Hafner et al., 2019) MASTERING ATARI WITH DISCRETE WORLD MODELS
® Muzer O (SChI' ittWieser et a1°/ 2020) Danijar Hafner * Timothy Lillicrap Mohammad Norouzi Jimmy Ba
Google Research DeepMind Google Research University of Toronto

® Deep Bisimulation (Zhang et al., 2021)
e A(C-State (Lamb et al., 2022)
® Dreamer, DreamerV?2, DreamerV3 (Hafner et al., 2020; 2021; 2023)
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Empirical latent model learning methods

Many empirical works have attempted to learn a latent model for control
® Value Prediction Network (Oh et al., 2017)

e Self-Supervised Prediction (Pathak et al., 2017)

e World Models (Ha and Schmidhuber, 2018)

e PlaNet (Hafner et al., 2019)

Mastering Diverse Domains through World Models
® MuZero (Schrittwieser et al., 2020)

Danijar Hafner!? Jurgis Pasukonis! Jimmy Ba? Timothy Lillicrap’

® Deep Bisimulation (Zhang et al., 2021)
e A(C-State (Lamb et al., 2022)
® Dreamer, DreamerV?2, DreamerV3 (Hafner et al., 2020; 2021; 2023)

'DeepMind ?University of Toronto

Kaiqing Zhang (kaiging@umnd.edu) Understanding (Cost-Driven) Representation Learning for Control 20



Empirical latent model learning methods

Many empirical works have attempted to learn a latent model for control
® Value Prediction Network (Oh et al., 2017)

e Self-Supervised Prediction (Pathak et al., 2017)

e World Models (Ha and Schmidhuber, 2018)

e PlaNet (Hafner et al., 2019)

e MuZero (Schrittwieser et al., 2020)

® Deep Bisimulation (Zhang et al., 2021)

e A(C-State (Lamb et al., 2022)

® Dreamer, DreamerV?2, DreamerV3 (Hafner et al., 2020; 2021; 2023)
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Empirical latent model learning methods

Many empirical works have attempted to learn a latent model for control

Kaiqging Zhang (kaiging@umd.edu)

Value Prediction Network (Oh et al., 2017)
Self-Supervised Prediction (Pathak et al., 2017)
World Models (Ha and Schmidhuber, 2018)
PlaNet (Hafner et al., 2019)

MuZero (Schrittwieser et al., 2020)

Deep Bisimulation (Zhang et al., 2021)
AC-State (Lamb et al., 2022)
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Motivation of this work

® Despite exciting empirical advances, theoretical understanding is relatively lacking

e What (latent state spaces) are these empirical methods essentially learning, with a finite-
number of samples?

e Even for very basic partially observable control systems, the answer was unknown
® Should pass the sanity-check for these basic control systems?

¢ Gain some insights from basic control problems
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Motivation of this work

e Higher-level: What's the minimal condition/right objective for latent model learning that
works for downstream control tasks? 3 quantities: observations, actions, costs
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Motivation of this work

e Higher-level: What's the minimal condition/right objective for latent model learning that
works for downstream control tasks? 3 quantities: observations, actions, costs

® Observation-driven: Reconstructing Observation — World Models (Ha and Schmidhuber,
2018), PlaNet and the Dreamer series (Hafner et al., 2019; 2020; 2021; 2023), etc.

e Action-driven: Inverse Models — (Pathak et al., 2017), AC-State (Lamb et al., 2022), etc.

TR

h2 h3
S z .l S 2 .l
n |

Q,

» ) . .
G AC_Sme(f,t,x,al,k) predict first action

from x toreach x
t t+k

dec dec dec

4 (f x,t+k)

bottleneck

Source: Left: “Mastering Diverse Domains through World Models ”. Right: “Guaranteed Discovery of Control-Endogenous Latent States with Multi-Step Inverse Models ”.
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Motivation of this work

e Minimal condition/Right objective for latent model learning that works for control?

® Objectives in reconstructing observation and inverse models are task-agnostic

Irrelevant Relevant

e ’ros: Can be universal and multi-task/ generalizable /\
e Cons: May contain control-irrelevant information . A i

/

e Cons: Easily distracted by noises

e Cons: Obs. can be high-dimensional and hard to predict

M.

Source: “Learning Invariant Representations for Reinforcement Learning without Reconstruction”.
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Motivation of this work

e Minimal condition/Right objective for latent model learning that works for control?

® Objectives in reconstructing observation and inverse models are task-agnostic

® Cost-driven: (Cumulative) cost prediction — Value Prediction Network (Oh et al., 2017),
MuZero (Schrittwieser et al., 2020), Deep Bisimulation (Zhang et al., 2021), etc.

® |tis task-specific, necessary for planning, and thus more “direct”

fout

enc fvalue
( gf 538 } —
ftrans
Copy S
() () -1

Source: “Value Prediction Network”. Core module
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Motivation of this work

e Minimal condition/Right objective for latent model learning that works for control?

® Objectives in reconstructing observation and inverse models are task-agnostic

® Cost-driven: (Cumulative) cost prediction — Value Prediction Network (Oh et al., 2017),
MuZero (Schrittwieser et al., 2020), Deep Bisimulation (Zhang et al., 2021), etc.

® |tis task-specific, necessary for planning, and thus more “direct”

Can cost-driven direct latent model learning provably
solve partially observable control?
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Problem Formulation
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Linear-quadratic-Gaussian control (LQG)
e Linear time-varying (LTV) model of LQG: for t > 0,

X1 =Ax,+Bu, +w,
e O e
where w, ~ #/(0,Z,), v, ~ #(0,XZ,) are i.i.d. Gaussian and initial state x, ~ /(0,X)

o Costclx,u) = HtzQt + Hul\%{/ terminal cost cp(x) = HX”2T

¢ [f model is known: optimal control is the Kalman filter (one type of latent model!)
20 = LoYo» %1 = Az + B+ Ly (Vi — Gy (Aiz, + Bty))
= A+ By + Ly 1Yy qs
combined with a linear-quadratic regulator u, = K.z, where (L, K, th_Ol are given by Riccati

difference equations
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Theoretical works on learning LOQG: Sys-ID

® For unknown time-invariant LOQG, “standard” treatment for finite-sample analysis lately
(Oymak and Ozay, 2018; Simchowitz et al., 2019; Lale et al., 2021; Zheng & Li, 2021) uses Markov
parameters for system identification (Ljung, 1998)
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Theoretical works on learning LOQG: Sys-ID

® For unknown time-invariant LOQG, “standard” treatment for finite-sample analysis lately
(Oymak and Ozay, 2018; Simchowitz et al., 2019; Lale et al., 2021; Zheng & Li, 2021) uses Markov
parameters for system identification (Ljung, 1998)

® The Markov parameter maps control actions to observations
Y, =[0,CB,CAB, ..., CA™*Bl[u; u,_; ...;u_, 1+ CAT 'x,_,

Markov parameter decay to zero

e Once the Markov parameter is learned, (A, B, C) are recovered by the Ho-Kalman algorithm

Problems?
e This pipeline is specific to linear (time-invariant) systems

® | earning Markov parameters is still “reconstructing” observation
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Our Approach
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Recall: Anatomy of empirical latent model learning

e Representation function gives latent state by z, = ¢(z,_, u,_1,y,) or z, = ¢,(h,)
e Latent dynamics z,,. | = f(z,, u,)
= latent policy y(u, | z,)

e [atent cost ¢z, u,)

e Overall policy (y; ° ¢, tT=_()1

Vi = th(ht)

) )

system { representation * latent policy

T T J

U, = (l//t ° th)(ht)
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Cost-driven latent model learning for LOG

e Representation function gives latent state by z. = Mh.orz,=A,_,z_, + B,_ju,_, + Ly,

e Latent dynamics z,, | = A,z, + Bu,

} = latent policy u, = K.z,

e Overall policy (M,, K, th_Ol or L, (A, B, L., K, tT=_01

Vi lp = ¢t(ht)

) )

system { representation * latent policy

T T J

U, = (Wt ° th)(ht)
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Cost-driven latent model learning for LOG

e Representation function gives latent state by z, = M h,
e Latent dynamics z,, | = A,z, + Bu,
e Latent cost ¢z, u,) = Hztl\th + HutHé

e Overall policy (M,, K, ,T;ol

Cost-driven latent model learning:

Given n trajectories, solve

T n
min 2 Z (Hthz(l)Hzt n ”ut(l)”%?t + b, — Ct(l))z
M.Q-R-b: =0 i=1 - )

cost prediction error
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Cost-driven latent model learmng for LQG

. Mam dlfference to World Model (Ha and ]
Schmidhuber, 20): they did observation- ‘

Data collection: 7 trajectories using actions u, ~ /' (0,6-1) .,
| reconstruction-based approach with autoencoder |

State representation learning: find the M, by solving

n +m—1
: ()12 2
min Z}(HMJ% 1% + Z; |uPl17 + b,
1= T=

Latent dynamics learning: convert history to latent state by zt(i) = Mtht(i) and use (zt(’), t(’), Z, (’)) to identify

latent model parameters A,, B, by ordinary linear regression

n Latent policy computation: apply the Riccati difference equation to compute feedback gain K,
Return policy (K, e M,)'~]
Main modifications to previous cost: cumulative cost (step 2)
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Cost-

mode

Cost-driven latent model learning for LOG

driven laten:

learning (ou

Classical system
identification (Sys-1D) .

Representation y _ C. )

o t+m—1 R

Uy Ups -

U1

t @ function M, @ A, B,
Q@

\@

Markov

Kaiqging Zhang (kaiging@umd.edu)

arameter G
D) @
Py

Step 1: learn M, by
cumulative cost
prediction

Step 2: identify
A, B, Q, in the

latent system

Recover
a )

~| A, B, C,
g )

Understanding (Cost-Driven) Representation Learning for Control
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Main Results
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Main Results

Can cost-driven latent model learning solve LQG control?

Theorem. Given an unknown LQG control problem with horizon 7, under
standard assumptions including stability, controllability (within £ steps) and
cost observability, cost-driven latent model learning returns from n collected
trajectories, with high probability (hiding poly dependence on prob. parameters)

o Astate representation function that is O(#Z*n~"*)-optimal in the first £ steps
and O(T**n~1%)-optimal in the next T — ¢ steps;

e Alatent policy thatis OO ¢n~V 4)—0ptimal in the first £ steps and
O(T*n~')-optimal in the next T — ¢ steps.
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Remarks & Challenges

e For LQG control, (cumulative) scalar cost is informative to recover the near-optimal state
representation function

® The insight of predicting cumulative cost in latent model learning has also been empirically
observed in MuZero (Schrittwieser et al., 2020)

e Challenge 1: Matrix quadratic regression in cost prediction — covariates are product of Gaussians

e Challenge 2: Insufficient excitement of the latent model system for the first £ several steps

® Linear regression with covariates whose covariances are rank-deficient, and with correlated noise
® Latent model can only be partially identified in certain directions (but was proven to be enough)

e Challenge 3: Matrix factorization — need a new Procrustes-type lemma (due to rank-deficiency)

n +m—1 +m—1

Cmin Y (IMATIP+ Y W+ b= Y )+ (M D, - AMAE =

=1 =1 7=t

— transttion prediction error
cost prediction error
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Extension: MuZero-style for LTI systems

® MuZero (Schrittwieser et al., 2020) supersedes AlphaGo (Silver et al., 2016), AlphaGo Zero (Silver et
al., 2017) and AlphaZero (Silver et al., 2018), as a “general game player” —

e Matches the superhuman performance of AlphaZero in Go, shogi and chess, while outperforming
model-free RL algorithms in Atari games

e Key algorithmic components: Latent Model Learning + Monte-Carlo Tree Search

® Viewed as a milestone of representation learning for control in deep RL

e Our latent model learning is not exactly the same as that in MuZero

2
|

e Ours (explicit) — solve least-squares on latent states: (4, B) € argmin Z 1Az + Bu” — zt(i)
A.B . +1

o MuZero-style (implicit) — by predicting the “cost” at future states, i.e., also “cost-driven”

T+H-1
min 2 (UIMRN1> + b = ¢)* + (IAMA, + Bu || + b — ¢,,1)*)
MABh

e This approach also works for LTI LQG control (when predicting “cumulative cost”, as before)!
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A Few More Highlights

e \What makes a good “(Information) State” — sufficient statistics for optimal decision-making — has
always existed in Stochastic Control literature (Striebel, 1965; Kwakernaak, 1965; Witsenhausen, 1976;
Kumar and Varaiya, 1986; Mahajan, 2008; Adlakha, Lall, Goldsmith, 2012)

® Approximate information state (AlS): (Subramanian et al., 2022)

¢ \What is the right (sufficient) conditions for an “approximate sufficient statistics”
® |t has to predict both “(single-step) reward” and “itselt” well
® State-based v.s. History-based representation learning: (Ni et al., 2024)
® Bridging the desiderata and languages from empirical (deep) RL and Control
® Key idea: “self-prediction”

® Cost-driven/MuZero-Style methods beyond linear quadratic case?
® |t doesn’t work for discrete-space case! (Jiang, 2024)

® |t is not a completely new idea! We had “Identification for Control” (14C) (Gevers, 2005)
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A Few More Highlights: Ongoing — A Unified Theory

task- task-
relevant  irrelevant

.O - -

uncontrollable | |

Learned state space
(well-defined in Controls literature)

Objective

.

~ -

o~ -/
~

Observation-driven Full state space . . ‘

Cost-driven Cost observable subspace ki

2 S 0 |

Action-driven Controllable subspace controllable , ®. ' é gy
- -

e Consolidate the intuition: different objectives work differently, with pros and cons Goal: Let more sunlight in

® Observation-driven: retains the most, but suffer from “noisy TV” issue (control-irrelevant information)

e Cost-driven: minimum subspace for optimal control, but may not generalize across tasks

e Action-driven: controllable subspace, but may not be enough for optimal control (e.g., when cost only
cares uncontrollable subspace)

® Can be viewed as approaches to (partial) system identification for control (14C)

Source: "Denoised MDPs: Learning World Models Better Than the World Itself”.
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Concluding Remarks
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Concluding Remarks

¢ What is a good state(-space) for practical control/RL tasks? What is the right objective to learn it?

® The state representation of LQG can be learned by predicting (cumulative) costs

® Insights into Value Prediction Network (Oh et al., 2017) & MuZero (Schrittwieser et al., 2020)
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Concluding Remarks

¢ What is a good state(-space) for practical control/RL tasks? What is the right objective to learn it?

® The state representation of LQG can be learned by predicting (cumulative) costs

® Insights into Value Prediction Network (Oh et al., 2017) & MuZero (Schrittwieser et al., 2020)

® Many open questions in State-Representation Learning for Control — requires bridging ideas

and insights from both Control and Learning
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