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Background
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“Robot learning” has fascinated me
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• Me entering the Robot Learning (as well as the “Modern RL” world)…

OpenAI, 2018 Marco Hutter’s group at 
ETH Zurich, 2021

And many many more…

Russ Tedrake’s group, MIT, 2018

Can we try to understand some ideas/principles behind them a bit more? 
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“State representation” for control
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• Control and reinforcement learning (RL) are predominantly based on state-space dynamic models

What is a good state (space) and how to learn it from data?

• In practical (learning for) control systems, e.g., robotic manipulation, the observations, e.g., 
images, are usually high-dimensional
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“Latent model learning” for control
• Many empirical works have attempted to learn a latent model for control

•
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Sources: Left and middle:  “Mastering Diverse Domains through World Models.” Right: https://online-go.com/.
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Latent model learning
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latent policy learning
latent model learning

data

Sources: ”Dream to Control: Learning Behaviors by Latent Imagination.”

Interface with the environment are 3 quantities: observations, actions, costs
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Setup: Control in a partially observable system

• A sequential decision-making problem with time indices 

• At step , agent observes 

• Policy/Controller determines action/control  based on history 

• Incur cost  at time 

• Finite horizon , trajectory 

• Special case: if  and , then it covers partially observed Markov 

decision processes (POMDP), with broad applications

t = 0,1,2,⋯

t ≥ 0 yt

ut ht = (y0, u0, …, yt−1, ut−1, yt)

ct t

T (y0, u0, c0, …, yT−1, uT−1, cT−1, yT, cT)

ℙx(xt+1 |xt, ut) ℙy(yt |xt)
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Anatomy of empirical latent model learning

• Representation function gives latent state by  or 

• Latent dynamics , latent cost   latent policy 

• Overall policy 

zt = ϕt(zt−1, ut−1, yt) zt = ϕt(ht)

zt+1 = ft(zt, ut) ct(zt, ut) ⇒ ψt(ut |zt)

(ψt ∘ ϕt)T−1
t=0
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system representation latent policy 

yt zt = ϕt(ht)

ut = (ψt ∘ ϕt)(ht)
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Motivation
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Empirical latent model learning methods
Many empirical works have attempted to learn a latent model for control

• Value Prediction Network (Oh et al., 2017)

11
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Many empirical works have attempted to learn a latent model for control

• Value Prediction Network (Oh et al., 2017)

• Self-Supervised Prediction (Pathak et al., 2017)
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Empirical latent model learning methods
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Many empirical works have attempted to learn a latent model for control

• Value Prediction Network (Oh et al., 2017)

• Self-Supervised Prediction (Pathak et al., 2017)

• World Models (Ha and Schmidhuber, 2018)
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Empirical latent model learning methods

“A path towards autonomous machine intelligence” — Yann LeCun
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Many empirical works have attempted to learn a latent model for control

• Value Prediction Network (Oh et al., 2017)

• Self-Supervised Prediction (Pathak et al., 2017)

• World Models (Ha and Schmidhuber, 2018)

• PlaNet (Hafner et al., 2019)
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Empirical latent model learning methods
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Many empirical works have attempted to learn a latent model for control

• Value Prediction Network (Oh et al., 2017)

• Self-Supervised Prediction (Pathak et al., 2017)

• World Models (Ha and Schmidhuber, 2018)

• PlaNet (Hafner et al., 2019)

• MuZero (Schrittwieser et al., 2020)
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Many empirical works have attempted to learn a latent model for control

• Value Prediction Network (Oh et al., 2017)

• Self-Supervised Prediction (Pathak et al., 2017)

• World Models (Ha and Schmidhuber, 2018)

• PlaNet (Hafner et al., 2019)

• MuZero (Schrittwieser et al., 2020)

• Deep Bisimulation (Zhang et al., 2021)
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Empirical latent model learning methods
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Many empirical works have attempted to learn a latent model for control

• Value Prediction Network (Oh et al., 2017)

• Self-Supervised Prediction (Pathak et al., 2017)

• World Models (Ha and Schmidhuber, 2018)

• PlaNet (Hafner et al., 2019)

• MuZero (Schrittwieser et al., 2020)

• Deep Bisimulation (Zhang et al., 2021)

• AC-State (Lamb et al., 2022)
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Many empirical works have attempted to learn a latent model for control

• Value Prediction Network (Oh et al., 2017)

• Self-Supervised Prediction (Pathak et al., 2017)

• World Models (Ha and Schmidhuber, 2018)

• PlaNet (Hafner et al., 2019)

• MuZero (Schrittwieser et al., 2020)

• Deep Bisimulation (Zhang et al., 2021)

• AC-State (Lamb et al., 2022)

• Dreamer, DreamerV2, DreamerV3 (Hafner et al., 2020; 2021; 2023)
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Many empirical works have attempted to learn a latent model for control

• Value Prediction Network (Oh et al., 2017)

• Self-Supervised Prediction (Pathak et al., 2017)

• World Models (Ha and Schmidhuber, 2018)

• PlaNet (Hafner et al., 2019)

• MuZero (Schrittwieser et al., 2020)

• Deep Bisimulation (Zhang et al., 2021)

• AC-State (Lamb et al., 2022)

• Dreamer, DreamerV2, DreamerV3 (Hafner et al., 2020; 2021; 2023)
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Many empirical works have attempted to learn a latent model for control
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Many empirical works have attempted to learn a latent model for control

• Value Prediction Network (Oh et al., 2017)
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Empirical latent model learning methods
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Motivation of this work

• Despite exciting empirical advances, theoretical understanding is relatively lacking

• What (latent state spaces) are these empirical methods essentially learning, with a finite-
number of samples?

• Even for very basic partially observable control systems, the answer was unknown

• Should pass the sanity-check for these basic control systems?

• Gain some insights from basic control problems

23



Kaiqing Zhang (kaiqing@umd.edu) Understanding (Cost-Driven) Representation Learning for Control

Motivation of this work
• Higher-level: What’s the minimal condition/right objective for latent model learning that 

works for downstream control tasks?
• Reconstructing observation: World Models (Ha and Schmidhuber, 2018), PlaNet and the 

Dreamer series (Hafner et al., 2019; 2020; 2021; 2023), etc.

• Inverse models: (Pathak et al., 2017), AC-State (Lamb et al., 2022), etc.

24

3 quantities: observations, actions, costs
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Motivation of this work
• Higher-level: What’s the minimal condition/right objective for latent model learning that 

works for downstream control tasks?
• Observation-driven: Reconstructing Observation — World Models (Ha and Schmidhuber, 

2018), PlaNet and the Dreamer series (Hafner et al., 2019; 2020; 2021; 2023), etc.

• Action-driven: Inverse Models — (Pathak et al., 2017), AC-State (Lamb et al., 2022), etc.

25

Source: Left: “Mastering Diverse Domains through World Models ”. Right: “Guaranteed Discovery of Control-Endogenous Latent States with Multi-Step Inverse Models ”.

3 quantities: observations, actions, costs
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Motivation of this work
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• Minimal condition/Right objective for latent model learning that works for control?

• Objectives in reconstructing observation and inverse models are task-agnostic

• Pros: Can be universal and multi-task/generalizable

• Cons: May contain control-irrelevant information

• Cons: Easily distracted by noises

• Cons: Obs. can be high-dimensional and hard to predict

Source: “Learning Invariant Representations for Reinforcement Learning without Reconstruction”.
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• It is task-specific, necessary for planning, and thus more “direct”

Motivation of this work

27

Source: “Value Prediction Network”.

• Minimal condition/Right objective for latent model learning that works for control?

• Objectives in reconstructing observation and inverse models are task-agnostic

• Cost-driven: (Cumulative) cost prediction — Value Prediction Network (Oh et al., 2017), 
MuZero (Schrittwieser et al., 2020), Deep Bisimulation (Zhang et al., 2021), etc.
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• It is task-specific, necessary for planning, and thus more “direct”

Motivation of this work
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• Minimal condition/Right objective for latent model learning that works for control?

• Objectives in reconstructing observation and inverse models are task-agnostic

• Cost-driven: (Cumulative) cost prediction — Value Prediction Network (Oh et al., 2017), 
MuZero (Schrittwieser et al., 2020), Deep Bisimulation (Zhang et al., 2021), etc.

Can cost-driven direct latent model learning provably 
solve partially observable control?
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Problem Formulation

29



Kaiqing Zhang (kaiqing@umd.edu) Understanding (Cost-Driven) Representation Learning for Control

Linear-quadratic-Gaussian control (LQG)
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• Linear time-varying (LTV) model of LQG: for , 

 where ,  are i.i.d. Gaussian and initial state  

t ≥ 0

wt ∼ 𝒩(0,Σwt
) vt ∼ 𝒩(0,Σvt

) x0 ∼ 𝒩(0,Σ0)

xt+1 = Atxt + Btut + wt,
yt = Ctxt + vt,

Goal:          min
π

Jπ = 𝔼π[∑
T

t=0
ct]

• Cost , terminal cost ct(x, u) = ∥x∥2
Qt

+ ∥u∥2
Rt

cT(x) = ∥x∥2
QT

z0 = L0y0, zt+1 = Atzt + Btut + Lt+1(yt+1 − Ct+1(Atzt + Btut))
= Atzt + Btut + Lt+1yt+1,

• If model is known: optimal control is the Kalman filter (one type of latent model!)

combined with a linear-quadratic regulator , where  are given by Riccati 
difference equations

ut = Ktzt (Lt, Kt)T−1
t=0
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Theoretical works on learning LQG: Sys-ID
• For unknown time-invariant LQG,  “standard” treatment for finite-sample analysis lately  

(Oymak and Ozay, 2018; Simchowitz et al., 2019; Lale et al., 2021; Zheng & Li, 2021) uses Markov 
parameters for system identification (Ljung, 1998)

31

https://scholar.google.se/citations?user=2lo28DgAAAAJ&hl=en&oi=sra
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Theoretical works on learning LQG: Sys-ID
• For unknown time-invariant LQG,  “standard” treatment for finite-sample analysis lately  

(Oymak and Ozay, 2018; Simchowitz et al., 2019; Lale et al., 2021; Zheng & Li, 2021) uses Markov 
parameters for system identification (Ljung, 1998)

• The Markov parameter maps control actions to observations

• Once the Markov parameter is learned,  are recovered by the Ho-Kalman algorithm(A, B, C)

32

yt = [0,CB, CAB, …, CAτ−2B]

Markov parameter

[ut; ut−1; …; ut−τ+1] + CAτ−1xt−τ+1

decay to zero

Problems? 
• This pipeline is specific to linear (time-invariant) systems 
• Learning Markov parameters is still “reconstructing” observation

https://scholar.google.se/citations?user=2lo28DgAAAAJ&hl=en&oi=sra
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Our Approach

33
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Recall: Anatomy of empirical latent model learning

34

system representation latent policy 

yt zt = ϕt(ht)

ut = (ψt ∘ ϕt)(ht)

• Representation function gives latent state by  or 

• Latent dynamics 

• Latent cost  

• Overall policy 

zt = ϕt(zt−1, ut−1, yt) zt = ϕt(ht)

zt+1 = ft(zt, ut)

ct(zt, ut)

(ψt ∘ ϕt)T−1
t=0

latent policy } ⇒ ψt(ut |zt)
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Cost-driven latent model learning for LQG

35

• Representation function gives latent state by  or 

• Latent dynamics 

• Latent cost 

• Overall policy  or 

zt = Mtht zt = At−1zt−1 + Bt−1ut−1 + Ltyt

zt+1 = Atzt + Btut

ct(zt, ut) = ∥zt∥2
Qt

+ ∥ut∥2
Rt

(Mt, Kt)T−1
t=0 L0, (At, Bt, Lt, Kt)T−1

t=0

latent policy } ⇒ ut = Ktzt

system representation latent policy 

yt zt = ϕt(ht)

ut = (ψt ∘ ϕt)(ht)
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Cost-driven latent model learning for LQG

36

Cost-driven latent model learning:
Given  trajectories, solven

min
Mt,Qt,Rt,bt

T

∑
t=0

n

∑
i=1

(∥Mth(i)
t ∥2

Qt
+ ∥u(i)

t ∥2
Rt

+ bt − c(i)
t )2

cost prediction error

• Representation function gives latent state by 

• Latent dynamics 

• Latent cost 

• Overall policy 

zt = Mtht

zt+1 = Atzt + Btut

ct(zt, ut) = ∥zt∥2
Qt

+ ∥ut∥2
Rt

(Mt, Kt)T−1
t=0
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Cost-driven latent model learning for LQG
Data collection:  trajectories using actions 

State representation learning: find the  by solving

Latent dynamics learning: convert history to latent state by  and use  to identify 
latent model parameters  by ordinary linear regression

Latent policy computation: apply the Riccati difference equation to compute feedback gain 

Return policy 

n ut ∼ 𝒩(0,σ2
uI)

Mt

z(i)
t = Mth(i)

t (z(i)
t , u(i)

t , z(i)
t+1, c(i)

t )
At, Bt

Kt

(Kt ∘ Mt)T−1
t=0

37

1

min
Mt,bt

n

∑
i=1

(∥Mth(i)
t ∥2 +

t+m−1

∑
τ=t

∥u(i)
τ ∥2

Rt
+ bt −

t+m−1

∑
τ=t

c(i)
t )2

2

3

4

5

Main modifications to previous cost: cumulative cost (step 2)

Main difference to World Model (Ha and 
Schmidhuber, 20): they did observation-

reconstruction-based approach with autoencoder
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Cost-driven latent model learning for LQG

38

zt

Representation 
function Mtht zt+1

ct

∑
t+m−1

τ=t
cτ∥zt∥2

At, Bt

Qt

Step 1: learn  by 
cumulative cost 

prediction

Mt

Step 2: identify 
 in the 

latent system
At, Bt, Qt}

ytu0, u1, …, ut−1

Markov 
parameter Gt Gt At, Bt, Ct

Cost-driven latent 
model learning (ours)

Classical system 
identification (Sys-ID)

then

Recover
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Main Results

39
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Can cost-driven latent model learning solve LQG control?

Main Results

40

Theorem. Given an unknown LQG control problem with horizon , under 
standard assumptions including stability, controllability (within  steps) and 
cost observability, cost-driven latent model learning returns from  collected 
trajectories, with high probability (hiding poly dependence on prob. parameters)

• A state representation function that is -optimal in the first  steps 
and -optimal in the next  steps;

• A latent policy that is -optimal in the first  steps and 
-optimal in the next  steps.

T
ℓ
n

𝒪̃(ℓ1/2n−1/4) ℓ
𝒪̃(T3/2n−1/2) T − ℓ

𝒪̃((𝒪(1))ℓℓn−1/4) ℓ
𝒪̃(T4n−1) T − ℓ
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Remarks & Challenges
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min
Mt,At,Bt,bt

n

∑
i=1

(∥Mth(i)
t ∥2 +

t+m−1

∑
τ=t

∥u(i)
τ ∥2

Rt
+ bt −

t+m−1

∑
τ=t

c(i)
t )2

cost prediction error

+ (Mt+1h(i)
t+1 − AtMth(i)

t − Btu(i)
t )2

transition prediction error

• For LQG control, (cumulative) scalar cost is informative to recover the near-optimal state 
representation function

• The insight of predicting cumulative cost in latent model learning has also been empirically 
observed in MuZero (Schrittwieser et al., 2020)

• Challenge 1: Matrix quadratic regression in cost prediction — covariates are product of Gaussians

• Challenge 2: Insufficient excitement of the latent model system for the first  several steps

• Linear regression with covariates whose covariances are rank-deficient, and with correlated noise
• Latent model can only be partially identified in certain directions (but was proven to be enough)

• Challenge 3: Matrix factorization — need a new Procrustes-type lemma (due to rank-deficiency) 

ℓ
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Extension: MuZero-style for LTI systems

42

• MuZero (Schrittwieser et al., 2020) supersedes AlphaGo (Silver et al., 2016), AlphaGo Zero (Silver et 
al., 2017) and AlphaZero (Silver et al., 2018), as a “general game player” — 

• Matches the superhuman performance of AlphaZero in Go, shogi and chess, while outperforming 
model-free RL algorithms in Atari games

• Key algorithmic components: Latent Model Learning + Monte-Carlo Tree Search

• Viewed as a milestone of representation learning for control in deep RL

• Our latent model learning is not exactly the same as that in MuZero

• Ours (explicit) — solve least-squares on latent states:

• MuZero-style (implicit) — by predicting the “cost” at future states, i.e., also “cost-driven”

• This approach also works for LTI LQG control (when predicting “cumulative cost”, as before)!

( ̂A, B̂) ∈ arg min
A,B ∑

i

∥Az(i)
t + Bu(i)

t − z(i)
t+1∥

2

min
M,A,B,b

T+H−1

∑
t=H

((∥Mht∥2 + b − ct)2 + (∥AMht + But∥2 + b − ct+1)2)
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A Few More Highlights
• What makes a good “(Information) State” — sufficient statistics for optimal decision-making — has 

always existed in Stochastic Control literature (Striebel, 1965; Kwakernaak, 1965; Witsenhausen, 1976; 

Kumar and Varaiya, 1986; Mahajan, 2008; Adlakha, Lall, Goldsmith, 2012) 

• Approximate information state (AIS): (Subramanian et al., 2022) 

• What is the right (sufficient) conditions for an “approximate sufficient statistics” 

• It has to predict both “(single-step) reward” and “itself“ well 

• State-based v.s. History-based representation learning: (Ni et al., 2024) 

• Bridging the desiderata and languages from empirical (deep) RL and Control  

• Key idea: “self-prediction” 

• Cost-driven/MuZero-Style methods beyond linear quadratic case? 

• It doesn’t work for discrete-space case! (Jiang, 2024) 

• It is not a completely new idea! We had “Identification for Control” (I4C) (Gevers, 2005)

43
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A Few More Highlights: Ongoing — A Unified Theory

• Consolidate the intuition: different objectives work differently, with pros and cons 

• Observation-driven: retains the most, but suffer from “noisy TV” issue (control-irrelevant information) 

• Cost-driven: minimum subspace for optimal control, but may not generalize across tasks 

• Action-driven: controllable subspace, but may not be enough for optimal control (e.g., when cost only 

cares uncontrollable subspace) 

• Can be viewed as approaches to (partial) system identification for control (I4C)

44

Objective Learned state space  
(well-defined in Controls literature)

Observation-driven Full state space

Cost-driven Cost observable subspace

Action-driven Controllable subspace controllable

uncontrollable

task-
relevant

task-
irrelevant

Goal: Let more sunlight in

Source: ”Denoised MDPs: Learning World Models Better Than the World Itself”.
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Concluding Remarks
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• What is a good state(-space) for practical control/RL tasks? What is the right objective to learn it?

• The state representation of LQG can be learned by predicting (cumulative) costs

• Insights into Value Prediction Network (Oh et al., 2017) & MuZero (Schrittwieser et al., 2020)

Concluding Remarks

46



Kaiqing Zhang (kaiqing@umd.edu) Understanding (Cost-Driven) Representation Learning for Control

• What is a good state(-space) for practical control/RL tasks? What is the right objective to learn it?

• The state representation of LQG can be learned by predicting (cumulative) costs

• Insights into Value Prediction Network (Oh et al., 2017) & MuZero (Schrittwieser et al., 2020)

Concluding Remarks
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• Many open questions in State-Representation Learning for Control — requires bridging ideas 
and insights from both Control and Learning
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Thanks!
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