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Abstract— Learning-to-Communicate (LTC) in partially ob-
servable environments has emerged and received increasing
attention in deep multi-agent reinforcement learning, where
the control and communication strategies are jointly learned.
On the other hand, the impact of communication has been
extensively studied in control theory. In this paper, we seek
to formalize and better understand LTC by bridging these
two lines of work, through the lens of information structures
(ISs). To this end, we formalize LTC in decentralized partially
observable Markov decision processes (Dec-POMDPs) under
the common-information-based framework from decentralized
stochastic control, and classify LTC problems based on the
ISs before (additional) information sharing. We first show
that non-classical LTCs are computationally intractable in
general, and thus focus on quasi-classical (QC) LTCs. We
then propose a series of conditions for QC LTCs, violating
which can cause computational hardness in general. Further,
we develop provable planning and learning algorithms for QC
LTCs, and show that some examples of QC LTCs satisfying
the above conditions can be solved with quasi-polynomial time
and samples. Along the way, we also establish some relation-
ship between (strictly) QC IS and the condition of having
strategy-independent common-information-based beliefs (SI-
CIBs), as well as solving Dec-POMDPs without computationally
intractable oracles but beyond those with the SI-CIB condition,
which may be of independent interest.

I. INTRODUCTION

The Learning-to-Communicate (LTC) problem has
emerged and gained traction in the area of (deep) multi-
agent reinforcement learning (MARL) [2], [3], [4]. Unlike
classical MARL, which aims to learn a control strategy
that minimizes the expected accumulated costs, LTC
seeks to jointly minimize over both the control and the
communication strategies of all the agents, as a way
to mitigate the challenges due to the agents’ partial
observability of the environment. Despite the promising
empirical successes, theoretical understandings of LTC
remain largely underexplored.

On the other hand, in control theory, a rich literature
has investigated the role of communication in decentral-
ized/networked control [5], [6], inspiring us to rigorously
examine LTCs from such a principled perspective. Most of
these studies, however, focused on linear systems, and did
not explore the non-asymptotic computational and/or sample
complexity guarantees when the system knowledge is not
known. A few recent studies [7], [8] started to explore the

†The authors are ordered alphabetically, and are affiliated with the
University of Maryland, College Park, MD, USA, 20742. Emails:
{xyliu999, yuriiyou, kaiqing}@umd.edu. This work
was supported by the Army Research Office (ARO) grant W911NF-24-
1-0085 and the NSF CAREER Award 2443704. A comprehensive technical
report that contains all the omitted details can be found at [1].

settings with general discrete (nonlinear) spaces, with special
communication protocols and state transition dynamics.

More broadly, the design of communication strategies
dictates the information structure (IS) of the control system,
which characterizes who knows what and when [9]. IS and
its impact on the optimization tractability, especially for
linear systems, have been extensively studied in decentralized
control, see [10], [11] for comprehensive overviews. In this
work, we seek a more principled understanding of LTCs
through the lens of information structures, with a focus on
the computational and sample complexities of the problem.

Specifically, we formalize LTCs in the general framework
of decentralized partially observable Markov decision pro-
cesses (Dec-POMDPs) [12], as in the empirical work [2],
[3], [4], and study its finite-time and sample complexity
guarantees. We detail our contributions as follows.
Contributions. (i) We formalize Learning-to-Communicate
in Dec-POMDPs under the common-information-based
framework from decentralized stochastic control [13], [14],
[15], allowing the sharing of historical information and
communication costs; (ii) We classify LTCs through the
lens of information structures, according to the ISs before
(additional) information sharing. We then show that LTCs
with non-classical [10] baseline IS can be computationally
intractable; (iii) Given the hardness, we focus on quasi-
classical (QC) LTCs, and propose a series of conditions
under which LTCs preserve the QC IS after sharing, while
violating which can cause computational hardness in general;
(iv) We propose both planning and learning algorithms for
QC LTCs, by reformulating them as Dec-POMDPs with
strategy-independent common-information-based beliefs (SI-
CIBs) [14], [15], a condition previously shown to be criti-
cal for taming computational intractability [15]; (v) Quasi-
polynomial time and sample complexities of the algorithms
are established for QC LTC examples that satisfy the con-
ditions in (iii). Along the way, we also establish some
relationship between (strictly) quasi-classical ((s)QC) ISs
and the SI-CIB condition, as well as solving general Dec-
POMDPs without computationally intractable oracles but
beyond the SI-CIB ones, thus advancing the results in [15].

II. PRELIMINARIES

A. Learning-to-Communicate (with Communication Cost)
For n > 1 agents, a (cooperative) Learning-to-

Communicate problem is described by a tuple L = ⟨H,S,
{Ai,h}i∈[n],h∈[H], {Oi,h}i∈[n],h∈[H], {Mi,h}i∈[n],h∈[H],T,
O, µ1, {Rh}h∈[H], {Kh}h∈[H]⟩, where H denotes the length
of each episode. Other components are specified as follows.



1) Decision-making components: We use S to denote the
state space, and Ai,h to denote the control action space of
agent i at timestep h ∈ [H]. We denote by sh ∈ S the state
and by ai,h the control action of agent i at timestep h. We
use ah := (a1,h, · · · , an,h) ∈ Ah :=

∏
i∈[n]Ai,h to denote

the joint control action of all the agents at timestep h. We
denote by T = {Th}h∈[H] the collection of state transition
kernels, where sh+1 ∼ Th(· | sh, ah) ∈ ∆(S). We use µ1 ∈
∆(S) to denote the initial state distribution, oi,h ∈ Oi,h to
denote the observation of agent i at timestep h, and oh :=
(o1,h, o2,h, · · · , on,h) ∈ Oh := O1,h × O2,h × · · ·On,h to
denote the joint observation of all the n agents at timestep h.
We use O = {Oh}h∈[H] to denote the collection of emission
functions, where oh ∼ Oh(· | sh) ∈ ∆(Oh) at any state sh ∈
S. We denote by Oi,h(· | sh) the emission for agent i, which
is the marginal distribution of oi,h given Oh(· | sh), at any
sh ∈ S . At each timestep h, agents will receive a common
reward rh = Rh(sh, ah), where Rh : S × Ah → [0, 1] is a
common reward function shared by the agents.

2) Communication components: In addition to reward-
driven decision-making, agents also need to decide and learn
(what) to communicate with others. At timestep h ∈ [H],
agents share part of their information zh ∈ Zh with other
agents, where zh consists of two parts, the baseline-sharing
part zbh ∈ Zb

h that comes from some existing sharing protocol
among agents, and the additional-sharing part zai,h ∈ Za

i,h for
each agent i that comes from explicit communication to be
decided/learned, with the joint additional-sharing informa-
tion zah := ∪ni=1z

a
i,h. We keep the baseline sharing (which

may be void) for generality, since a certain amount of sharing
is necessary for computational and sample tractability [15],
the focus of this paper. Note that zh = zbh ∪ zah and
zbh ∩ zah = ∅. The shared information is part of the historical
observations and (both control and communication) actions.

At timestep h, the common information among all
the agents is thus defined as: ch− = ∪h−1

t=1 zt ∪ zbh,
and ch+ = ∪ht=1zt, where ch− and ch+ denote the
(accumulated) common information before and after ad-
ditional sharing, respectively. Hence, the private infor-
mation of agent i at time h before and after ad-
ditional sharing is defined accordingly as pi,h− =
{oi,1:h, ai,1:h−1}\ch− , pi,h+ = {oi,1:h, ai,1:h−1}\ch+ . We
denote by ph− := (p1,h− , · · · , pn,h−) and ph+ :=
(p1,h+ , · · · , pn,h+) the joint private information before and
after additional sharing, respectively. We then denote by
τi,h− : = pi,h− ∪ ch− , τi,h+ : = pi,h+ ∪ ch+ the information
available to agent i at timestep h, before and after additional
sharing, respectively, with τh− : = ph− ∪ ch− , τh+ : = ph+ ∪
ch+ denoting the associated joint information.

We use mi,h ∈Mi,h to denote the communication action
of agent i at timestep h, determining what information zai,h
she will share, through the way to be specified later. We
denote by mh := (m1,h, · · · ,mn,h) ∈ Mh :=

∏
i∈[n]Mi,h

the joint communication action of all the agents. We use Kh :
Za

h → [0, 1] to denote the communication cost function, and
κh = Kh(z

a
h) to denote the communication cost at timestep

h. The information flow evolves as follows, where we follow

the convention that any quantity at h = 0 is empty/null.

Assumption II.1 (Information evolution).
(a) (Baseline sharing). For each h ∈ [H], zbh =

χh(p(h−1)+ , ah−1, oh) for some fixed transforma-
tion χh; for each agent i ∈ [n], pi,h− =
ξi,h(pi,(h−1)+ , ai,h−1, oi,h) for some fixed transforma-
tion ξi,h, and the joint private information thus evolves
as ph− = ξh(p(h−1)+ , ah−1, oh) for some fixed transfor-
mation ξh;

(b) (Additional sharing). For each i ∈ [n], h ∈ [H], zai,h =
ϕi,h(pi,h− ,mi,h) for some function ϕi,h, given commu-
nication action mi,h, and moreover, mi,h ∈ zai,h; the
joint additional sharing information zah := ∪i∈[n]z

a
i,h is

thus generated by zah = ϕh(ph− ,mh), for some function
ϕh; for each agent i ∈ [n], pi,h+ = pi,h−\zai,h;

(c) ((τi,h− , τi,h+)-inclusion). For each i ∈ [n], h ∈ [H],
τi,h− ⊆ τi,h+ ⊆ τi,(h+1)− , and oi,h ∈ τi,h− .

Note that the fixed transformations above (e.g., the χh and
ξi,h) are not affected by the realized values of the random
variables, but dictate some pre-defined transformation of
the input random variables. See [13], [14] and §B in [15]
for common examples of baseline sharing that admit such
fixed transformations, and examples in [1, §A] on how
they are extended to the LTC setting. Condition (c) above
assumes that the agent has full memory of the information
she had in the past and at present. We emphasize that this
is closely related, but different from the common notion
of perfect recall [16], where the agent has to also recall
all her past actions. Condition (c), in contrast, relaxes the
memorization of the actions, but includes the instantaneous
observation oi,h, as a basic requirement for closed-loop
decision-making/control. This condition is satisfied by the
models and examples in [10], [13], [14], [15], and see also
[1, §A] for more examples that satisfy this assumption.

Meanwhile, for both the baseline and additional sharing
protocols, we follow the model in the series of studies on
partial history/information sharing [13], [14], [15], [7], [8]
that, if an agent shares, she will share the information with
all other agents. We make it formal below using the verbiage
with σ-algebra, in order to be compatible with the literature
on information structures [17], [10] to be discussed later.

Assumption II.2. ∀i1, i2 ∈ [n], h1, h2 ∈ [H], i1 ̸= i2, h1 <
h2, if σ(oi1,h1) ⊆ σ(τi2,h−

2
), then σ(oi1,h1) ⊆ σ(ch−

2
),

and if σ(ai1,h1
) ⊆ σ(τi2,h−

2
), then σ(ai1,h1

) ⊆ σ(ch−
2
);

if σ(oi1,h1
) ⊆ σ(τi2,h+

2
), then σ(oi1,h1

) ⊆ σ(ch+
2
), and if

σ(ai1,h1) ⊆ σ(τi2,h+
2
), then σ(ai1,h1) ⊆ σ(ch+

2
).

Assumptions II.1-II.2 will be made throughout the paper.
3) Strategies and solution concept: At timestep h, each

agent i has two strategies, a control strategy and a communi-
cation strategy. We define a control strategy as gai,h : Ti,h+ →
Ai,h and a communication strategy as gmi,h : Ti,h− →Mi,h.
We denote by gah = (ga1,h, · · · , gan,h) the joint control strategy
and by gmh = (gm1,h, · · · , gmn,h) the joint communication
strategy. We denote by Gai,h,Gmi,h,Gah,Gmh the corresponding
spaces of gai,h, g

m
i,h, g

a
h, g

m
h , respectively.



The objective of the agents in the LTC problem is to
maximize the expected accumulated sum of the reward and
the negative communication cost from timestep h = 1 to H:

JL(g
a
1:H , gm1:H) := EL

[
H∑

h=1

(rh − κh)

∣∣∣∣ ga1:H , gm1:H

]
,

where the expectation EL is taken over all the randomness in
L, given the strategies (ga1:H , gm1:H). With this objective, for
any ϵ ≥ 0, we can define the solution concept of an ϵ-team
optimum for L as follows.

Definition II.3 (ϵ-team optimum). We call a joint strategy
(ga1:H , gm1:H) an ϵ-team optimal strategy of the LTC L if

max
g̃a
1:H

∈Ga
1:H

,g̃m
1:H

∈Gm
1:H

JL(g̃
a
1:H , g̃m1:H)− JL(g

a
1:H , gm1:H) ≤ ϵ.

If ϵ = 0, we call (ga1:H , gm1:H) a team-optimal strategy of L.

B. Information Structure of LTC

In decentralized stochastic control, the notion of informa-
tion structure [17], [10] captures who knows what and when
as the system evolves. In LTC, as the additional sharing via
communication will also affect the IS and is not determined
beforehand, when we discuss the IS of an LTC problem, we
will refer to that of the problem with only baseline sharing. In
particular, an LTC L without additional sharing is essentially
a Dec-POMDP (with potential baseline information sharing),
and will be referred to as the Dec-POMDP induced by L (see
a formal definition in [1, §II-B] for completeness).

In §II-A, we introduced LTC in the state-space model.
Information structure, meanwhile, is usually more conve-
niently discussed within the equivalent framework of the
intrinsic model [17]. In an intrinsic model, each agent only
acts once throughout the system evolution, and the same
agent in the state-space model at different timesteps is now
treated as different agents. There are thus n × H agents in
total. Formally, for completeness, we extend the intrinsic-
model-based reformulation of LTCs in [1, §F].

(Strictly) quasi-classical ISs are important subclasses of
ISs, which have been extensively studied in stochastic control
[17], [11] (see the instantiation for Dec-POMDPs in [1,
§F]). We extend such a categorization to LTC problems with
different ISs (of the baseline sharing) as follows.

Definition II.4 ((Strictly) quasi-classical LTC). We call an
LTC L (strictly) quasi-classical if the Dec-POMDP induced
by L (denoted by DL), i.e., LTC without additional sharing, is
(strictly) quasi-classical. Namely, each agent in the intrinsic
model of DL knows the information (and the actions) of the
agents who influence her, either directly or indirectly.

An LTC L that is not QC will thus be referred to as a non-
classical LTC. See [1, §A] for the examples of (s)QC LTCs.
Note that the categorization above is based on the ISs before
additional sharing, an inherent property of the problem.

III. HARDNESS AND STRUCTURAL ASSUMPTIONS

It is known that computing an (approximate) team-
optimum in Dec-POMDPs, which are LTCs without

information-sharing, is NEXP-hard [12]. The hardness can-
not be fully circumvented even when agents are allowed
to share information: even if agents share all the informa-
tion, the LTC problem reduces to a Partially Observable
Markov Decision Process (POMDP), which is known to
be PSPACE-hard [18]. Hence, additional assumptions are
necessary to make LTCs computationally tractable. We intro-
duce several such assumptions and their justifications below,
whose proofs can all be found in [1, §B].

Recently, [19] showed that observable POMDPs [20], a
class of POMDPs with relatively informative observations,
admit quasi-polynomial time algorithms to solve. Such a
condition and quasi-polynomial complexity result was then
established for Dec-POMDPs with information sharing in
[15]. As solving LTCs is at least as hard as solving the Dec-
POMDPs considered in [15], we first also make such an
observability assumption on the joint emission function as
in [15], to avoid computationally intractable oracles.

Assumption III.1 (γ-observability [20], [19], [15]). There
exists a γ > 0 such that ∀h ∈ [H], the emission Oh satisfies
that ∀b1, b2 ∈ ∆(S),

∥∥O⊤
h b1 −O⊤

h b2
∥∥
1
≥ γ

∥∥b1 − b2
∥∥
1
.

However, we show next that, Assumption III.1 is not
enough when it comes to LTC, if the baseline sharing IS
is not favorable, and in particular, non-classical [10]. The
hardness persists even under a few additional assumptions
to be introduced later that will make LTCs more tractable.

Lemma III.2 (Non-classical LTCs are hard). For non-
classical LTCs under Assumptions III.1, III.4, III.5, and III.7,
finding an ϵ

H -team optimum is PSPACE-hard.

Note that the hardness comes from the intuition that, when
communication costs are high, the additional sharing from
LTC will be limited, preventing the upgrade of the IS from
a non-classical one to a (quasi-)classical one, which is hard
with only the joint observability of the emission (see As-
sumption III.1), even along with several other assumptions.

By Lemma III.2, we will hence focus on the quasi-
classical LTCs hereafter. Indeed, QC IS is also known to
be critical for efficiently solving linear decentralized control
[21], [22]. However, quasi-classicality may not be sufficient
for LTCs, since the additional sharing may break the QC IS,
and introduce computational hardness, as argued below.

Firstly, the breaking may result from the communication
strategies. In particular, the general communication strategy
space in §II-A.3 allows the dependence on agents’ private
information, which introduces incentives for signaling [10]
and can also cause computational hardness, as shown next.

Lemma III.3 (QC LTCs with full-history-dependent commu-
nication strategies are hard). For QC LTCs under Assump-
tion III.1, together with Assumptions III.5 and III.7, com-
puting a team-optimum in the general space of (Ga1:H ,Gm1:H)
with Gmi,h := {gmi,h : Ti,h− →Mi,h} is NP-hard.

The hardness in Lemma III.3 originates from the fact that
when depending on the private/local information, determin-
ing the communication action can be made as a Team Deci-



sion problem (TDP) [23], which is known to be hard. This
will be the case even when the instantaneous observations
are relatively observable (see Assumptions III.1-III.7).

To avoid this hardness, we thus focus on communication
strategies that only condition on the common information.
Note that, this assumption does not lose the generality in the
sense that the private information pi,h− can still be shared. It
only means that the communication action is not determined
by pi,h− , and the additional sharing is still dictated by zai,h =
ϕi,h(pi,h− ,mi,h) (see Assumption II.1), depending on pi,h− .

Assumption III.4 (Common-information-based communica-
tion strategy). The communication strategies take common
information as input, with the following form:

∀i ∈ [n], h ∈ [H], gmi,h : Ch− → Mi,h. (III.1)

Secondly, the breaking of QC may result from the control
strategies: if some agent did not influence others in the
baseline sharing (and thus these other agents did not have to
access the agent’s available information, while still satisfying
QC), while she starts to influence others by sharing her
(useless) control actions, this will make her control strategies
relevant. We make the following two assumptions to avoid
the related pessimistic cases, each followed by a computa-
tional hardness result when the condition is missing.

Assumption III.5 (Control-useless action is not used). ∀i ∈
[n], h ∈ [H], if agent i’s action ai,h does not influence the
state sh+1, namely, ∀sh ∈ S, ah ∈ Ah, a

′
i,h ∈ Ai,h, a

′
i,h ̸=

ai,h,Th(· | sh, ah) = Th(· | sh, (a′i,h, a−i,h)). Then, ∀h′ > h,
the random variable ai,h /∈ τh′− and ai,h /∈ τh′+ .

Lemma III.6 (QC LTCs without Assumption III.5 are hard).
For QC LTCs under Assumptions III.1, III.4, and III.7,
finding a team-optimum is still NP-hard.

Note that Assumption III.5 was implicitly made in the
literature [14], [15] when there exist agents who cannot
control the transition dynamics.

Assumption III.7 (Other agents’ emissions are non-degener-
ate). ∀h ∈ [H], i ∈ [n], O−i,h satisfies that ∀b1, b2 ∈ ∆(S)
such that b1 ̸= b2, O⊤

−i,hb1 ̸= O⊤
−i,hb2.

Lemma III.8 (QC LTCs without Assumption III.7 are hard).
For QC LTCs under Assumptions III.1, III.4, and III.5,
finding an ϵ/H-team optimum is still PSPACE-hard.

We have justified the above assumptions by showing that
missing one of them may cause computational intractability
in general. More importantly, as we will show later, as an-
other justification, LTCs under Assumptions III.4, III.5, and
III.7 can indeed preserve the (s)QC information structures
after additional sharing, making it possible for the overall
LTC problem to be computationally tractable. Examples that
satisfy these assumptions can be found in [1, §A].

IV. SOLVING LTC PROBLEMS PROVABLY

We now study how to solve LTC problems provably, via
either planning (with model knowledge) or learning (without
model knowledge). The pipeline of our solution is shown in
Fig. 1, and proofs of the results can be found in [1, §C].

QC LTC w/ 
assumptions

QC  
Dec-POMDP

sQC (SI-CIB) 
Dec-POMDP

SI-CIB 
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common

info model

Problems:

Team-optimal 
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ℒ 𝓓𝓓𝓛𝓛 𝓓𝓓𝓛𝓛
† 𝓓𝓓𝓛𝓛

′ 𝓜𝓜
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(IV. A) (IV. B) (IV. C) (IV. D)

Fig. 1: The algorithmic pipeline for solving the LTC problems.

A. An Equivalent Dec-POMDP DL

Given any LTC L, we can define a Dec-POMDP DL char-
acterized by ⟨H̃, S̃, {Ãi,h}i∈[n],h∈[H̃], {Õi,h}i∈[n],h∈[H̃],

{T̃h}h∈[H̃], {Õh}h∈[H̃], µ̃1, {R̃h}h∈[H̃]⟩, such that these two
are equivalent (under the assumptions in §III): ∀h ∈ [H],

H̃ = 2H, S̃ = S, s̃2h−1 = s̃2h = sh, Ãi,2h−1 =Mi,h,

Ãi,2h = Ai,h, Õi,2h−1 = Oi,h, Õi,2h = {∅}, µ̃1 = µ1,

Õ2h−1 = Oh, T̃2h−1(s̃2h | s̃2h−1, ã2h−1) = 1[s̃2h = s̃2h−1],

T̃2h(s̃2h+1 | s̃2h, ã2h) = Th(s̃2h+1 | s̃2h, ã2h),
R̃2h−1 = −Kh, R̃2h = Rh, p̃i,2h−1 = ∅, p̃i,2h = pi,h+ ,

c̃2h−1 = ch− , c̃2h = ch+ , z̃2h−1 = zbh, z̃2h = zah. (IV.1)

Note that we follow the convention of τ̃i,h := p̃i,h ∪ c̃h
for any h ∈ [H̃], and at the odd timestep 2t − 1 for any
t ∈ [H], we have p̃i,2t−1 = ∅ under Assumption III.4, i.e.,
in DL, each agent only uses the common information so far
for decision-making at timestep 2t− 1. Correspondingly, for
any h ∈ [H̃], i ∈ [n], we denote by g̃i,h, g̃h the strategies and
by G̃i,h, G̃h the associated strategy spaces in DL.

Essentially, this reformulation splits the H-step decision-
making and communication procedure into a 2H-step one. A
similar splitting of the timesteps was also used in [7], [8]. In
comparison, we consider a more general setting, where the
state is not decoupled, and agents are allowed to share the
observations and actions at the previous timesteps, due to the
generality of our LTC formulation. One can verify that the
L and DL are equivalent in terms of solution strategies, and
DL preserves the QC IS from L, under Assumptions III.4,
III.5, and III.7 (see [1, §IV.A] for more details).

B. Strict Expansion of DL

However, being QC does not necessarily imply DL can be
solved without computationally intractable oracles. Note that
this is different from the continuous-space, linear quadratic
case, where QC problems can be reformulated and solved
efficiently [21], [22]. With discrete spaces, the recent result
[15] established a concrete quasi-polynomial-time complex-
ity for planning, under the strategy independence assumption
[14] on the common-information-based beliefs [13], [14].
This SI-CIB assumption was shown critical for computa-
tional tractability [15] – it eliminates the need to enumerate
the past strategies in dynamic programming, which would
otherwise be prohibitively large. Thus, we need to connect
QC IS to the SI-CIB condition for computational tractability.

To this end, one can first expand the QC DL to a strictly
QC problem D†

L (notation in which will have˘) by adding the



actions of the agents who influence the later agents in the
intrinsic model of DL to the shared common information.
One can show that this expansion does not change the
optimal value, and the (approximate) optimal strategy of
D†

L can be reduced to that of DL efficiently. Note that
by definition, D†

L preserves the (s)QC IS of DL. More
importantly, a benefit of having a strictly QC D†

L is that, it
has SI-CIBs under the assumptions in §III, making it possible
to be solved without computationally intractable oracles as
in [15]. See more details on this expansion in [1, §IV.B].

C. Refinement of D†
L

Despite having SI-CIBs, D†
L is still not eligible for apply-

ing the results in [15]: the information evolution rules of D†
L

break those in [14], [15]. Specifically, due to Assumption
III.4, we set τ̃i,2t−1 = c̃2t−1, p̃i,2t−1 = ∅,∀t ∈ [H], i ∈ [n]
in DL, which violates Assumption 1 in [14], [15]. To address
this issue, we propose to further refine D†

L to obtain a Dec-
POMDP D′

L, which satisfies the information evolution rules.
The elements in D′

L (represented with the ¯ notation) remain
the same as those in D†

L, except that the private information
at odd steps is now refined as pi,2t−1 = pi,t−\c̆2t−1, and we
define τ i,2t−1 := pi,2t−1 ∪ c2t−1 for any t ∈ [H].
The new Dec-POMDP D′

L is not equivalent to D†
L in general,

since it enlarges the strategy space at the odd timesteps.
However, if we define new strategy spaces in D′

L as Gi,2t−1 :
C2t−1 → Ai,2t−1,Gi,2t : T i,2t → Ai,2t for each t ∈ [H], i ∈
[n], and thus define Gh to be the associated joint strategy
space, then solving D†

L is equivalent to finding a best-in-
class team-optimal strategy of D′

L within the space G1:H .

Theorem IV.1. Let D†
L be an sQC Dec-POMDP generated

from L after reformulation and strict expansion, and D′
L be

the refinement of D†
L as introduced above. Then, finding the

optimal strategy in D†
L is equivalent to finding the optimal

strategy of D′
L in the space G1:H , and D′

L satisfies the
following information evolution rules: for each h ∈ [H]:

ch = ch−1 ∪ zh, zh = χh(ph−1, ah−1, oh)

for each i ∈ [n], pi,h = ξi,h(pi,h−1, ai,h−1, oi,h),

with some functions {χh}h∈[H], {ξi,h}i∈[n],h∈[H]. Further-
more, if Assumptions III.5 and III.7 hold, then D′

L has SI-
CIBs with respect to the strategy space G1:H , i.e., ∀h ∈
[H], sh ∈ S, ph ∈ Ph, ch ∈ Ch, g1:h−1, g

′
1:h−1 ∈ G1:h−1

such that ch is reachable under both g1:h−1 and g′1:h−1:

PD′
L

h (sh, ph | ch, g1:h−1) = PD′
L

h (sh, ph | ch, g′1:h−1). (IV.2)

D. Planning in QC LTC with Finite-Time Complexity

Now we focus on how to solve the SI-CIB Dec-POMDP
D′

L without computationally intractable oracles, which has
been studied in [15]. Given a Dec-POMDP D′

L with SI-
CIBs, [15] proposed to construct an expected-approximate-
common-information model M through finite memory (as
defined in [1, §C]), when D′

L is γ-observable. However, the
Dec-POMDP D′

L obtained from LTC has two key differences
from the general ones considered in [15]. First, D′

L does

not satisfy the γ-observability assumption throughout the
whole 2H timesteps. Fortunately, since the emissions at
odd steps are still γ-observable, while those at even steps
are unimportant as the states remain unchanged from the
previous step, similar results of belief contraction and near-
optimality of finite-memory truncation as in [15] can still
be obtained. Second, the rewards at the odd steps can now
depend on the private information ph, instead of the state
sh. Thanks to the definition of the approximate common-
information-based beliefs {PM

h (sh, ph | ĉh)}h∈[H] (with ĉh
denoting the approximate common information compressed
from ch), which is the joint probability of sh and ph, one
can still properly evaluate the rewards at the odd steps in the
algorithms of [15]. Hence, we can leverage the approaches in
[15] to find an approximately optimal strategy g∗

1:H
through

backward induction from timesteps h = H to 1.
Note that in each step of the backward induction, a Team

Decision problem [23] needs to be solved for each ĉh, which
is known to be NP-hard in general [23]:(
ĝ∗1,h(· | ĉh, ·), · · · , ĝ∗n,h(· | ĉh, ·)

)
← argmax

γh

Q∗,M
h (ĉh, γh),

(IV.3)
where the Q-value function and the prescription γh are
defined in [1, §C]. Hence, to obtain overall computational
tractability, we make the following assumption, as in [15].

Assumption IV.2 (One-step tractability ofM). The one-step
Team Decision problems induced byM (i.e., Eq. (IV.3)) can
be solved in polynomial time for all h = 2t, t ∈ [H].

Several remarks are in order regarding Assumption IV.2.
First, it can be viewed as a minimal assumption when it
comes to computational tractability – even with H = 1 and
no LTC, one-step TDP requires additional structures to be
solved efficiently. Second, since the Dec-POMDP here is
reformulated from an LTC under Assumption III.4, it suffices
to only assume one-step tractability for the control (i.e.,
even) steps. Third, even without Assumption IV.2, the SI-
CIB property of D′

L and thus the derivation of dynamic
programs of fixed, tractable sizes to solve L efficiently
still hold. Without such efforts, intractably many TDPs may
need to be solved, leaving it less hopeful for computational
tractability (even under Assumption IV.2). Finally, such an
assumption is satisfied for several classes of Dec-POMDPs
with information sharing, see [1, §G] for more examples.
With this assumption, we can obtain a planning algorithm
with quasi-polynomial time complexity (see [1, §C]).

E. LTC with Finite-Time and Sample Complexities

Based on the planning results, we are now ready to solve
the learning problem with both time and sample complexity
guarantees. In particular, we can treat the samples from
L as the samples from D′

L: the reformulation step (§IV-
A) does not change the system dynamics, but only maps
the information to different random variables; the expansion
step (§IV-B) only requires agents to share more actions with
each other, without changing the input and output of the
environment; the refinement step (§IV-C) only recovers the



private information the agents had in the original L. This
way, we can utilize similar algorithmic ideas in [15] to
develop a learning algorithm for LTC problems. See [1, §C]
for more details of the provable LTC algorithms adapted from
[15]. The algorithm has the following finite-time and sample
complexity guarantees.

Theorem IV.3. Given any QC LTC problem L satisfying
Assumptions III.1, III.4, III.5, and III.7, we can construct an
SI-CIB Dec-POMDP problem D′

L. Moreover, there exists
an LTC algorithm (see Algorithm 2 in [1, §C]) learning in
D′

L, such that if the learned expected-approximate-common-
information models M̂ satisfy Assumption IV.2, then an
ϵ-team-optimal strategy for L can be learned with high
probability, with time and sample complexities polynomial
in the parameters of M̂. Specifically, if L has the baseline
sharing protocols as in [1, §A], then such an algorithm can
learn an ϵ-team optimal strategy for L with high probability,
with both quasi-polynomial time and sample complexities.

V. SOLVING GENERAL QC DEC-POMDPS

In §IV, we developed a pipeline for solving a special
class of QC Dec-POMDPs generated by LTCs, without
computationally intractable oracles. In fact, the pipeline can
also be extended to solving general QC Dec-POMDPs, which
thus advances the results in [15] that can only address SI-
CIB Dec-POMDPs, a result of independent interest. Without
much confusion given the context, we will adapt the notation
for LTCs to studying general Dec-POMDPs: we set h+ =
h− = h and void the additional sharing protocol. We extend
the results in §IV to general QC Dec-POMDPs as follows.

Theorem V.1. Consider a Dec-POMDP D under Assump-
tion II.1 (c). If D is sQC and satisfies Assumptions II.2, III.5,
and III.7, then it has SI-CIBs. Meanwhile, if D has SI-CIBs
and perfect recall, then it is sQC (up to null sets).

Perfect recall [16] here means that the agents will never
forget their own past information and actions (see also [1,
§D]). Note that Assumption II.1 (c) is similar but different
from perfect recall: it is implied by the latter with oi,h ∈ τi,h.
Also, Assumptions II.2, III.5, and III.7 were originally made
for LTCs, and here we meant to impose them for Dec-
POMDPs with h+ = h− = h. Finally, by sQC up to null sets,
we meant that if agent (i1, h1) influences agent (i2, h2) in the
intrinsic model of the Dec-POMDP, then under any strategy
g1:H , σ(τ i1,h1

) ⊆ σ(τ i2,h2
) except the null sets generated by

g1:H , where we add ¯ for all the notation in the Dec-POMDP
(as that of D′

L in §IV-C). Given Theorem V.1 and the results
in §IV, we illustrate the relationship between LTCs and
Dec-POMDPs with different assumptions and information
structures in Fig. 2, which may be of independent interest.
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